Question
upstudy study bank question image url

Let x , y and z be random variables having the joint pdf \[ f(x, y, z)=\left\{\begin{array}{r}k\left(z^{2}+x y / 2\right), 0
Ask by Murphy Bird. in Nigeria
Feb 18,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

(i) \( k = \frac{24}{11} \) (ii) \( f_{X,Z}(x, z) = \frac{24}{11} \left(z^{2} + \frac{x}{4}\right) \) (iii) \( f_Y(y) = \frac{24}{11} \left(\frac{1}{3} + \frac{y}{4}\right) \)

Solution

To solve the problem, we will follow the steps outlined: ### Step 1: Find the value of \( k \) The joint probability density function (pdf) must integrate to 1 over the entire space. Therefore, we need to calculate the integral of \( f(x, y, z) \) over the specified limits and set it equal to 1. The joint pdf is given by: \[ f(x, y, z) = k\left(z^{2} + \frac{xy}{2}\right), \quad 0 < x < 1, \, 0 < y < 1, \, 0 < z < 1 \] We need to compute the following integral: \[ \int_0^1 \int_0^1 \int_0^1 k\left(z^{2} + \frac{xy}{2}\right) \, dz \, dy \, dx = 1 \] Let's compute the integral step by step. 1. **Integrate with respect to \( z \)**: \[ \int_0^1 \left(z^{2} + \frac{xy}{2}\right) \, dz = \left[\frac{z^{3}}{3} + \frac{xy}{2}z\right]_0^1 = \frac{1}{3} + \frac{xy}{2} \] 2. **Now integrate with respect to \( y \)**: \[ \int_0^1 \left(\frac{1}{3} + \frac{xy}{2}\right) \, dy = \left[\frac{y}{3} + \frac{xy^{2}}{4}\right]_0^1 = \frac{1}{3} + \frac{x}{4} \] 3. **Finally, integrate with respect to \( x \)**: \[ \int_0^1 \left(\frac{1}{3} + \frac{x}{4}\right) \, dx = \left[\frac{x}{3} + \frac{x^{2}}{8}\right]_0^1 = \frac{1}{3} + \frac{1}{8} = \frac{8}{24} + \frac{3}{24} = \frac{11}{24} \] Now, we set the integral equal to 1: \[ k \cdot \frac{11}{24} = 1 \implies k = \frac{24}{11} \] ### Step 2: Find the joint marginal density of \( x \) and \( z \) The joint marginal density of \( x \) and \( z \) is obtained by integrating out \( y \): \[ f_{X,Z}(x, z) = \int_0^1 f(x, y, z) \, dy \] Substituting \( f(x, y, z) \): \[ f_{X,Z}(x, z) = \int_0^1 \frac{24}{11}\left(z^{2} + \frac{xy}{2}\right) \, dy \] Calculating the integral: 1. **Integrate with respect to \( y \)**: \[ \int_0^1 \left(z^{2} + \frac{xy}{2}\right) \, dy = z^{2} + \frac{x}{4} \] Thus, \[ f_{X,Z}(x, z) = \frac{24}{11} \left(z^{2} + \frac{x}{4}\right) \] ### Step 3: Find the marginal density of \( Y \) alone The marginal density of \( Y \) is obtained by integrating out \( x \) and \( z \): \[ f_Y(y) = \int_0^1 \int_0^1 f(x, y, z) \, dx \, dz \] Substituting \( f(x, y, z) \): \[ f_Y(y) = \int_0^1 \int_0^1 \frac{24}{11}\left(z^{2} + \frac{xy}{2}\right) \, dx \, dz \] Calculating the integral: 1. **Integrate with respect to \( x \)**: \[ \int_0^1 \left(z^{2} + \frac{xy}{2}\right) \, dx = z^{2} + \frac{y}{4} \] 2. **Now integrate with respect to \( z \)**: \[ \int_0^1 \left(z^{2} + \frac{y}{4}\right) \, dz = \left[\frac{z^{3}}{3} + \frac{yz}{4}\right]_0^1 = \frac{1}{3} + \frac{y}{4} \] Thus, \[ f_Y(y) = \frac{24}{11} \left(\frac{1}{3} + \frac{y}{4}\right) \] ### Summary of Results (i) The value of \( k \) is \( \frac{24}{11} \). (ii) The joint marginal density of \( x \) and \( z \) is: \[ f_{X,Z}(x, z) = \frac{24}{11} \left(z^{2} + \frac{x}{4}\right) \] (iii) The marginal density of \( Y \) alone is: \[ f_Y(y) = \frac{24}{11} \left(\frac{1}{3} + \frac{y}{4}\right) \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

To solve the problem, let's go through each part step by step. **(i) Finding the value of k:** To find the value of \( k \), we need to ensure that the total probability integrates to 1. We will integrate the joint probability density function (pdf) over the given ranges for \( x \), \( y \), and \( z \). \[ \int_0^1 \int_0^1 \int_0^1 k\left(z^2 + \frac{xy}{2}\right) \, dx \, dy \, dz = 1 \] Splitting this into two parts: 1. **Integrate \( z^2 \):** \[ \int_0^1 z^2 dz = \frac{1}{3} \] 2. **Integrate \( \frac{xy}{2} \):** \[ \int_0^1 \int_0^1 \frac{xy}{2} \, dx \, dy = \frac{1}{2} \int_0^1 x \, dx \int_0^1 y \, dy = \frac{1}{2}\left(\frac{1}{2}\right)\left(\frac{1}{2}\right) = \frac{1}{8} \] Now, combining the results of these two trials within the integral: \[ \int_0^1 \int_0^1 \int_0^1 k\left(z^2 + \frac{xy}{2}\right) \, dx \, dy \, dz = k\left(\frac{1}{3} + \frac{1}{8}\right) \] Calculating the sum: \[ \frac{1}{3} + \frac{1}{8} = \frac{8}{24} + \frac{3}{24} = \frac{11}{24} \] Now, setting the integral equal to 1: \[ k\left(\frac{11}{24}\right) = 1 \quad \Rightarrow \quad k = \frac{24}{11} \] Thus, \( k = \frac{24}{11} \). --- **(ii) Finding the joint marginal density of \( x \) and \( z \):** To find the joint marginal density \( f_{X,Z}(x,z) \), we integrate out \( y \): \[ f_{X,Z}(x,z) = \int_0^1 f(x, y, z) \, dy = \int_0^1 \left(\frac{24}{11}\left(z^2 + \frac{xy}{2}\right)\right) \, dy \] Calculating this integral: 1. **Integrate \( z^2 \):** \[ \int_0^1 z^2 \, dy = z^2 \] 2. **Integrate \( \frac{xy}{2} \):** \[ \int_0^1 \frac{xy}{2} \, dy = \frac{x}{2} \int_0^1 y \, dy = \frac{x}{2} \cdot \frac{1}{2} = \frac{x}{4} \] So now combining: \[ \int_0^1 f(x,y,z) \, dy = \left(z^2 + \frac{x}{4}\right) \] Therefore, \[ f_{X,Z}(x,z) = \frac{24}{11}\left(z^2 + \frac{x}{4}\right) \] --- **(iii) Finding the marginal density of Y alone:** To find the marginal density \( f_Y(y) \), we integrate out both \( x \) and \( z \): \[ f_Y(y) = \int_0^1 \int_0^1 f(x,y,z) \, dx \, dz \] Calculating the integral: 1. **Calculate \( z^2 \):** \[ \int_0^1 z^2 \, dz = \frac{1}{3} \] 2. **Calculate \( \frac{xy}{2} \):** \[ \int_0^1 \int_0^1 \frac{xy}{2} \, dx \, dz = \frac{y}{2} \cdot \int_0^1 x \, dx \cdot \int_0^1 dz = \frac{y}{2} \cdot \frac{1}{2} \cdot 1 = \frac{y}{4} \] Putting it together: \[ f_Y(y) = \frac{24}{11}\left(\

Related Questions

Latest Probability Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy