Let x , y and z be random variables having the joint pdf
\[ f(x, y, z)=\left\{\begin{array}{r}k\left(z^{2}+x y / 2\right), 0
Ask by Murphy Bird. in Nigeria
Feb 18,2025
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Extra Insights
To solve the problem, let's go through each part step by step. **(i) Finding the value of k:** To find the value of \( k \), we need to ensure that the total probability integrates to 1. We will integrate the joint probability density function (pdf) over the given ranges for \( x \), \( y \), and \( z \). \[ \int_0^1 \int_0^1 \int_0^1 k\left(z^2 + \frac{xy}{2}\right) \, dx \, dy \, dz = 1 \] Splitting this into two parts: 1. **Integrate \( z^2 \):** \[ \int_0^1 z^2 dz = \frac{1}{3} \] 2. **Integrate \( \frac{xy}{2} \):** \[ \int_0^1 \int_0^1 \frac{xy}{2} \, dx \, dy = \frac{1}{2} \int_0^1 x \, dx \int_0^1 y \, dy = \frac{1}{2}\left(\frac{1}{2}\right)\left(\frac{1}{2}\right) = \frac{1}{8} \] Now, combining the results of these two trials within the integral: \[ \int_0^1 \int_0^1 \int_0^1 k\left(z^2 + \frac{xy}{2}\right) \, dx \, dy \, dz = k\left(\frac{1}{3} + \frac{1}{8}\right) \] Calculating the sum: \[ \frac{1}{3} + \frac{1}{8} = \frac{8}{24} + \frac{3}{24} = \frac{11}{24} \] Now, setting the integral equal to 1: \[ k\left(\frac{11}{24}\right) = 1 \quad \Rightarrow \quad k = \frac{24}{11} \] Thus, \( k = \frac{24}{11} \). --- **(ii) Finding the joint marginal density of \( x \) and \( z \):** To find the joint marginal density \( f_{X,Z}(x,z) \), we integrate out \( y \): \[ f_{X,Z}(x,z) = \int_0^1 f(x, y, z) \, dy = \int_0^1 \left(\frac{24}{11}\left(z^2 + \frac{xy}{2}\right)\right) \, dy \] Calculating this integral: 1. **Integrate \( z^2 \):** \[ \int_0^1 z^2 \, dy = z^2 \] 2. **Integrate \( \frac{xy}{2} \):** \[ \int_0^1 \frac{xy}{2} \, dy = \frac{x}{2} \int_0^1 y \, dy = \frac{x}{2} \cdot \frac{1}{2} = \frac{x}{4} \] So now combining: \[ \int_0^1 f(x,y,z) \, dy = \left(z^2 + \frac{x}{4}\right) \] Therefore, \[ f_{X,Z}(x,z) = \frac{24}{11}\left(z^2 + \frac{x}{4}\right) \] --- **(iii) Finding the marginal density of Y alone:** To find the marginal density \( f_Y(y) \), we integrate out both \( x \) and \( z \): \[ f_Y(y) = \int_0^1 \int_0^1 f(x,y,z) \, dx \, dz \] Calculating the integral: 1. **Calculate \( z^2 \):** \[ \int_0^1 z^2 \, dz = \frac{1}{3} \] 2. **Calculate \( \frac{xy}{2} \):** \[ \int_0^1 \int_0^1 \frac{xy}{2} \, dx \, dz = \frac{y}{2} \cdot \int_0^1 x \, dx \cdot \int_0^1 dz = \frac{y}{2} \cdot \frac{1}{2} \cdot 1 = \frac{y}{4} \] Putting it together: \[ f_Y(y) = \frac{24}{11}\left(\