Pregunta
upstudy study bank question image url

Let x , y and z be random variables having the joint pdf \[ f(x, y, z)=\left\{\begin{array}{r}k\left(z^{2}+x y / 2\right), 0
Ask by Murphy Bird. in Nigeria
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(i) \( k = \frac{24}{11} \) (ii) \( f_{X,Z}(x, z) = \frac{24}{11} \left(z^{2} + \frac{x}{4}\right) \) (iii) \( f_Y(y) = \frac{24}{11} \left(\frac{1}{3} + \frac{y}{4}\right) \)

Solución

To solve the problem, we will follow the steps outlined: ### Step 1: Find the value of \( k \) The joint probability density function (pdf) must integrate to 1 over the entire space. Therefore, we need to calculate the integral of \( f(x, y, z) \) over the specified limits and set it equal to 1. The joint pdf is given by: \[ f(x, y, z) = k\left(z^{2} + \frac{xy}{2}\right), \quad 0 < x < 1, \, 0 < y < 1, \, 0 < z < 1 \] We need to compute the following integral: \[ \int_0^1 \int_0^1 \int_0^1 k\left(z^{2} + \frac{xy}{2}\right) \, dz \, dy \, dx = 1 \] Let's compute the integral step by step. 1. **Integrate with respect to \( z \)**: \[ \int_0^1 \left(z^{2} + \frac{xy}{2}\right) \, dz = \left[\frac{z^{3}}{3} + \frac{xy}{2}z\right]_0^1 = \frac{1}{3} + \frac{xy}{2} \] 2. **Now integrate with respect to \( y \)**: \[ \int_0^1 \left(\frac{1}{3} + \frac{xy}{2}\right) \, dy = \left[\frac{y}{3} + \frac{xy^{2}}{4}\right]_0^1 = \frac{1}{3} + \frac{x}{4} \] 3. **Finally, integrate with respect to \( x \)**: \[ \int_0^1 \left(\frac{1}{3} + \frac{x}{4}\right) \, dx = \left[\frac{x}{3} + \frac{x^{2}}{8}\right]_0^1 = \frac{1}{3} + \frac{1}{8} = \frac{8}{24} + \frac{3}{24} = \frac{11}{24} \] Now, we set the integral equal to 1: \[ k \cdot \frac{11}{24} = 1 \implies k = \frac{24}{11} \] ### Step 2: Find the joint marginal density of \( x \) and \( z \) The joint marginal density of \( x \) and \( z \) is obtained by integrating out \( y \): \[ f_{X,Z}(x, z) = \int_0^1 f(x, y, z) \, dy \] Substituting \( f(x, y, z) \): \[ f_{X,Z}(x, z) = \int_0^1 \frac{24}{11}\left(z^{2} + \frac{xy}{2}\right) \, dy \] Calculating the integral: 1. **Integrate with respect to \( y \)**: \[ \int_0^1 \left(z^{2} + \frac{xy}{2}\right) \, dy = z^{2} + \frac{x}{4} \] Thus, \[ f_{X,Z}(x, z) = \frac{24}{11} \left(z^{2} + \frac{x}{4}\right) \] ### Step 3: Find the marginal density of \( Y \) alone The marginal density of \( Y \) is obtained by integrating out \( x \) and \( z \): \[ f_Y(y) = \int_0^1 \int_0^1 f(x, y, z) \, dx \, dz \] Substituting \( f(x, y, z) \): \[ f_Y(y) = \int_0^1 \int_0^1 \frac{24}{11}\left(z^{2} + \frac{xy}{2}\right) \, dx \, dz \] Calculating the integral: 1. **Integrate with respect to \( x \)**: \[ \int_0^1 \left(z^{2} + \frac{xy}{2}\right) \, dx = z^{2} + \frac{y}{4} \] 2. **Now integrate with respect to \( z \)**: \[ \int_0^1 \left(z^{2} + \frac{y}{4}\right) \, dz = \left[\frac{z^{3}}{3} + \frac{yz}{4}\right]_0^1 = \frac{1}{3} + \frac{y}{4} \] Thus, \[ f_Y(y) = \frac{24}{11} \left(\frac{1}{3} + \frac{y}{4}\right) \] ### Summary of Results (i) The value of \( k \) is \( \frac{24}{11} \). (ii) The joint marginal density of \( x \) and \( z \) is: \[ f_{X,Z}(x, z) = \frac{24}{11} \left(z^{2} + \frac{x}{4}\right) \] (iii) The marginal density of \( Y \) alone is: \[ f_Y(y) = \frac{24}{11} \left(\frac{1}{3} + \frac{y}{4}\right) \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the problem, let's go through each part step by step. **(i) Finding the value of k:** To find the value of \( k \), we need to ensure that the total probability integrates to 1. We will integrate the joint probability density function (pdf) over the given ranges for \( x \), \( y \), and \( z \). \[ \int_0^1 \int_0^1 \int_0^1 k\left(z^2 + \frac{xy}{2}\right) \, dx \, dy \, dz = 1 \] Splitting this into two parts: 1. **Integrate \( z^2 \):** \[ \int_0^1 z^2 dz = \frac{1}{3} \] 2. **Integrate \( \frac{xy}{2} \):** \[ \int_0^1 \int_0^1 \frac{xy}{2} \, dx \, dy = \frac{1}{2} \int_0^1 x \, dx \int_0^1 y \, dy = \frac{1}{2}\left(\frac{1}{2}\right)\left(\frac{1}{2}\right) = \frac{1}{8} \] Now, combining the results of these two trials within the integral: \[ \int_0^1 \int_0^1 \int_0^1 k\left(z^2 + \frac{xy}{2}\right) \, dx \, dy \, dz = k\left(\frac{1}{3} + \frac{1}{8}\right) \] Calculating the sum: \[ \frac{1}{3} + \frac{1}{8} = \frac{8}{24} + \frac{3}{24} = \frac{11}{24} \] Now, setting the integral equal to 1: \[ k\left(\frac{11}{24}\right) = 1 \quad \Rightarrow \quad k = \frac{24}{11} \] Thus, \( k = \frac{24}{11} \). --- **(ii) Finding the joint marginal density of \( x \) and \( z \):** To find the joint marginal density \( f_{X,Z}(x,z) \), we integrate out \( y \): \[ f_{X,Z}(x,z) = \int_0^1 f(x, y, z) \, dy = \int_0^1 \left(\frac{24}{11}\left(z^2 + \frac{xy}{2}\right)\right) \, dy \] Calculating this integral: 1. **Integrate \( z^2 \):** \[ \int_0^1 z^2 \, dy = z^2 \] 2. **Integrate \( \frac{xy}{2} \):** \[ \int_0^1 \frac{xy}{2} \, dy = \frac{x}{2} \int_0^1 y \, dy = \frac{x}{2} \cdot \frac{1}{2} = \frac{x}{4} \] So now combining: \[ \int_0^1 f(x,y,z) \, dy = \left(z^2 + \frac{x}{4}\right) \] Therefore, \[ f_{X,Z}(x,z) = \frac{24}{11}\left(z^2 + \frac{x}{4}\right) \] --- **(iii) Finding the marginal density of Y alone:** To find the marginal density \( f_Y(y) \), we integrate out both \( x \) and \( z \): \[ f_Y(y) = \int_0^1 \int_0^1 f(x,y,z) \, dx \, dz \] Calculating the integral: 1. **Calculate \( z^2 \):** \[ \int_0^1 z^2 \, dz = \frac{1}{3} \] 2. **Calculate \( \frac{xy}{2} \):** \[ \int_0^1 \int_0^1 \frac{xy}{2} \, dx \, dz = \frac{y}{2} \cdot \int_0^1 x \, dx \cdot \int_0^1 dz = \frac{y}{2} \cdot \frac{1}{2} \cdot 1 = \frac{y}{4} \] Putting it together: \[ f_Y(y) = \frac{24}{11}\left(\

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad