Question
upstudy study bank question image url

\( a_{n}=\frac{(-1)^{n}}{(n+1)(n+3)} \) 1) Find \( \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| \) \( \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\square \)

Ask by Higgins Kelly. in the United States
Feb 20,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

\[ \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| = 1 \]

Solution

Evaluate the limit by following steps: - step0: Evaluate using transformations: \(\lim _{n\rightarrow +\infty}\left(\left|\frac{\left(-1\right)^{n+1}}{\left(n+2\right)\left(n+4\right)}\times \frac{\left(n+1\right)\left(n+3\right)}{\left(-1\right)^{n}}\right|\right)\) - step1: Multiply the terms: \(\lim _{n\rightarrow +\infty}\left(\left|-\frac{\left(n+1\right)\left(n+3\right)}{\left(n+2\right)\left(n+4\right)}\right|\right)\) - step2: Calculate the absolute value: \(\lim _{n\rightarrow +\infty}\left(\left|\frac{\left(n+1\right)\left(n+3\right)}{\left(n+2\right)\left(n+4\right)}\right|\right)\) - step3: Rewrite the expression: \(|\lim _{n\rightarrow +\infty}\left(\frac{\left(n+1\right)\left(n+3\right)}{\left(n+2\right)\left(n+4\right)}\right)|\) - step4: Calculate: \(|1|\) - step5: Calculate the absolute value: \(1\) Calculate the limit \( \lim_{n \rightarrow \infty}\left|\frac{(-1)^{n+1}}{(n+2)(n+4)} \cdot \frac{(n+1)(n+3)}{(-1)^{n}}\right| \). Evaluate the limit by following steps: - step0: Evaluate using transformations: \(\lim _{n\rightarrow +\infty}\left(\left|\frac{\left(-1\right)^{n+1}}{\left(n+2\right)\left(n+4\right)}\times \frac{\left(n+1\right)\left(n+3\right)}{\left(-1\right)^{n}}\right|\right)\) - step1: Multiply the terms: \(\lim _{n\rightarrow +\infty}\left(\left|-\frac{\left(n+1\right)\left(n+3\right)}{\left(n+2\right)\left(n+4\right)}\right|\right)\) - step2: Calculate the absolute value: \(\lim _{n\rightarrow +\infty}\left(\left|\frac{\left(n+1\right)\left(n+3\right)}{\left(n+2\right)\left(n+4\right)}\right|\right)\) - step3: Rewrite the expression: \(|\lim _{n\rightarrow +\infty}\left(\frac{\left(n+1\right)\left(n+3\right)}{\left(n+2\right)\left(n+4\right)}\right)|\) - step4: Calculate: \(|1|\) - step5: Calculate the absolute value: \(1\) To find \( \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| \), we start by substituting the expression for \( a_n \): \[ a_n = \frac{(-1)^{n}}{(n+1)(n+3)} \] Now, we calculate \( a_{n+1} \): \[ a_{n+1} = \frac{(-1)^{n+1}}{(n+2)(n+4)} \] Next, we find the ratio \( \frac{a_{n+1}}{a_n} \): \[ \frac{a_{n+1}}{a_n} = \frac{\frac{(-1)^{n+1}}{(n+2)(n+4)}}{\frac{(-1)^{n}}{(n+1)(n+3)}} = \frac{(-1)^{n+1}}{(-1)^{n}} \cdot \frac{(n+1)(n+3)}{(n+2)(n+4)} = -\frac{(n+1)(n+3)}{(n+2)(n+4)} \] Taking the absolute value: \[ \left|\frac{a_{n+1}}{a_n}\right| = \frac{(n+1)(n+3)}{(n+2)(n+4)} \] Now, we compute the limit as \( n \) approaches infinity: \[ \lim_{n \rightarrow \infty} \frac{(n+1)(n+3)}{(n+2)(n+4)} \] Dividing the numerator and the denominator by \( n^2 \): \[ = \lim_{n \rightarrow \infty} \frac{1 + \frac{1}{n}}{\frac{2}{n} + \frac{4}{n^2}} = \frac{1 \cdot 1}{1 \cdot 1} = 1 \] Thus, we have: \[ \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| = 1 \] So the final answer is: \[ \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| = 1 \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

To find \( \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| \), we first express \( a_{n+1} \): \[ a_{n+1} = \frac{(-1)^{n+1}}{(n+2)(n+4)} \] Now, let's calculate the absolute value of the ratio: \[ \left|\frac{a_{n+1}}{a_{n}}\right| = \left|\frac{\frac{(-1)^{n+1}}{(n+2)(n+4)}}{\frac{(-1)^{n}}{(n+1)(n+3)}}\right| = \frac{(n+1)(n+3)}{(n+2)(n+4)} \] Now, we simplify this expression: \[ \left|\frac{a_{n+1}}{a_{n}}\right| = \frac{(n+1)(n+3)}{(n+2)(n+4)} \] Next, we divide the numerator and the denominator by \( n^2 \): \[ \left|\frac{a_{n+1}}{a_{n}}\right| = \frac{\left(1 + \frac{1}{n}\right)\left(1 + \frac{3}{n}\right)}{\left(1 + \frac{2}{n}\right)\left(1 + \frac{4}{n}\right)} \] Taking the limit as \( n \) approaches infinity: \[ \lim_{n \to \infty} \left|\frac{a_{n+1}}{a_{n}}\right| = \frac{(1 + 0)(1 + 0)}{(1 + 0)(1 + 0)} = 1 \] Thus, we have: \[ \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| = 1 \] So, the final answer is: \[ \boxed{1} \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy