Question
upstudy study bank question image url

Tentukan turunan pertama dari fungsi \[ y=3 x^{2} \cos 6 x \] A. \( 6 x \cos 6 x-18 x^{2} \sin 6 x \) B. \( 6 x \cos 6 x+18 x^{2} \sin 6 x \) C. \( 6 x \cos 6 x-12 x^{2} \sin 6 x \) D. \( 6 x \cos 6 x+12 x^{2} \sin 6 x \) E. \( 3 x \cos 6 x-12 x^{2} \sin 6 x \)

Ask by Mcfarlane Wilson. in Indonesia
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The derivative of \( y = 3x^2 \cos 6x \) is \( 6x \cos 6x - 18x^2 \sin 6x \). So, the correct choice is A.

Solution

To find the derivative of   y = 3x² cos 6x, we use the product rule. Let   u(x) = 3x²  and  v(x) = cos 6x. First, compute the derivatives:   u'(x) = 6x,   v'(x) = –sin 6x · 6 = –6 sin 6x   (using the chain rule). Now, applying the product rule:   y' = u'(x)·v(x) + u(x)·v'(x)     = 6x cos 6x + 3x² (–6 sin 6x)     = 6x cos 6x – 18x² sin 6x. Thus, the correct answer is option A.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

Untuk menghitung turunan pertama dari fungsi \( y = 3 x^2 \cos(6x) \), kita perlu menggunakan aturan produk, di mana \( u = 3x^2 \) dan \( v = \cos(6x) \). Langkah pertama adalah mencari turunan dari \( u \) dan \( v \): - \( u' = 6x \) - \( v' = -\sin(6x) \cdot 6 = -6\sin(6x) \) Kemudian, dengan aturan produk \( (uv)' = u'v + uv' \): \[ y' = (6x)(\cos(6x)) + (3x^2)(-6\sin(6x)) \] \[ y' = 6x \cos(6x) - 18x^2 \sin(6x) \] Jadi, turunan pertama dari fungsi tersebut adalah: **A. \( 6 x \cos 6 x - 18 x^{2} \sin 6 x \)**.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy