Use the alternative curvature formula \( \kappa=\frac{|a \times v|}{|v|^{3}} \) to find the curvature of the following parameterized curve. \( r(t)=\langle 5 \cos t, \sqrt{5} \sin t, 2 \cos t\rangle \) \( \kappa=\square \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Mind Expander
To find the curvature \( \kappa \) of the parameterized curve given by \( r(t) = \langle 5 \cos t, \sqrt{5} \sin t, 2 \cos t \rangle \), we first need to compute \( a(t) \) (the acceleration vector) and \( v(t) \) (the velocity vector). 1. Compute the velocity \( v(t) = r'(t) \): \[ v(t) = \langle -5 \sin t, \sqrt{5} \cos t, -2 \sin t \rangle \] 2. Compute the acceleration \( a(t) = v'(t) \): \[ a(t) = \langle -5 \cos t, -\sqrt{5} \sin t, -2 \cos t \rangle \] 3. Now, calculate the cross product \( a \times v \): \[ a \times v = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -5 \cos t & -\sqrt{5} \sin t & -2 \cos t \\ -5 \sin t & \sqrt{5} \cos t & -2 \sin t \end{vmatrix} \] Expanding this determinant, we find: \[ a \times v = \mathbf{i} \left( (-\sqrt{5} \sin t)(-2 \sin t) - (-2 \cos t)(\sqrt{5} \cos t) \right) - \mathbf{j} \left( (-5 \cos t)(-2 \sin t) - (-2 \cos t)(-5 \sin t) \right) + \mathbf{k} \left( (-5 \cos t)(\sqrt{5} \cos t) - (-\sqrt{5} \sin t)(-5 \sin t) \right) \] which simplifies to: \[ a \times v = \langle 2\sqrt{5} \sin^2 t - 2\sqrt{5} \cos^2 t, -10 (\sin^2 t - \cos^2 t), -5\sqrt{5} (\cos^2 t + \sin^2 t) \rangle \] Further simplification gives: \[ a \times v = \langle 2\sqrt{5} (\sin^2 t - \cos^2 t), -10 (\sin^2 t - \cos^2 t), -5\sqrt{5} \rangle \] 4. Calculate the magnitude \( |a \times v| \): \( |a \times v| = \sqrt{(2\sqrt{5} (\sin^2 t - \cos^2 t))^2 + (-10 (\sin^2 t - \cos^2 t))^2 + (-5\sqrt{5})^2} \). Putting the terms together leads to: \[ = \sqrt{20(\sin^2 t - \cos^2 t)^2 + 100(\sin^2 t - \cos^2 t)^2 + 125} = \sqrt{120 (\sin^2 t - \cos^2 t)^2 + 125} \] 5. Calculate \( |v| \) and \( |v|^3 \): \[ |v| = \sqrt{(-5 \sin t)^2 + (\sqrt{5} \cos t)^2 + (-2 \sin t)^2} = \sqrt{25 \sin^2 t + 5 \cos^2 t + 4 \sin^2 t} = \sqrt{29 \sin^2 t + 5 \cos^2 t} \] To simplify this can be complex, but knowing we have \( a \times v \) simplifies it. 6. Finally, plug into the curvature formula: \[ \kappa = \frac{|a \times v|}{|v|^3} \] 7. After calculating, we find: \[ \kappa = \frac{\sqrt{120(\sin^2 t - \cos^2 t)^2 + 125}}{(|v|^3)} \] Thus, the curvature \( \kappa \) for the parameterized curve \( r(t) \) is given as: \(\kappa = \frac{\sqrt{120(\sin^2 t - \cos^2 t)^2 + 125}}{