Question
upstudy study bank question image url

Use the alternative curvature formula \( \kappa=\frac{|a \times v|}{|v|^{3}} \) to find the curvature of the following parameterized curve. \( r(t)=\langle 5 \cos t, \sqrt{5} \sin t, 2 \cos t\rangle \) \( \kappa=\square \)

Ask by Evans Garza. in the United States
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The curvature \( \kappa \) of the given curve is \( \frac{\sqrt{145} |\sin^2 t - \cos^2 t|}{(29 \sin^2 t + 5 \cos^2 t)^{3/2}} \).

Solution

To find the curvature \( \kappa \) of the parameterized curve given by \( r(t) = \langle 5 \cos t, \sqrt{5} \sin t, 2 \cos t \rangle \), we will follow these steps: 1. **Calculate the velocity vector \( v(t) \)** by differentiating \( r(t) \) with respect to \( t \). 2. **Calculate the acceleration vector \( a(t) \)** by differentiating \( v(t) \) with respect to \( t \). 3. **Compute the cross product \( a \times v \)**. 4. **Calculate the magnitudes \( |a \times v| \) and \( |v| \)**. 5. **Substitute these values into the curvature formula \( \kappa = \frac{|a \times v|}{|v|^3} \)**. Let's start with step 1 and calculate the velocity vector \( v(t) \): \[ v(t) = \frac{dr}{dt} = \left\langle \frac{d}{dt}(5 \cos t), \frac{d}{dt}(\sqrt{5} \sin t), \frac{d}{dt}(2 \cos t) \right\rangle \] Calculating the derivatives: \[ v(t) = \left\langle -5 \sin t, \sqrt{5} \cos t, -2 \sin t \right\rangle \] Next, we will calculate the acceleration vector \( a(t) \): \[ a(t) = \frac{dv}{dt} = \left\langle \frac{d}{dt}(-5 \sin t), \frac{d}{dt}(\sqrt{5} \cos t), \frac{d}{dt}(-2 \sin t) \right\rangle \] Calculating the derivatives: \[ a(t) = \left\langle -5 \cos t, -\sqrt{5} \sin t, -2 \cos t \right\rangle \] Now, we will compute the cross product \( a \times v \): \[ a \times v = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -5 \cos t & -\sqrt{5} \sin t & -2 \cos t \\ -5 \sin t & \sqrt{5} \cos t & -2 \sin t \end{vmatrix} \] Calculating the determinant: \[ a \times v = \mathbf{i} \left( (-\sqrt{5} \sin t)(-2 \sin t) - (-2 \cos t)(\sqrt{5} \cos t) \right) - \mathbf{j} \left( (-5 \cos t)(-2 \sin t) - (-2 \cos t)(-5 \sin t) \right) + \mathbf{k} \left( (-5 \cos t)(\sqrt{5} \cos t) - (-5 \sin t)(-\sqrt{5} \sin t) \right) \] Calculating each component: 1. For \( \mathbf{i} \): \[ 2\sqrt{5} \sin^2 t - 2\sqrt{5} \cos^2 t = 2\sqrt{5} (\sin^2 t - \cos^2 t) \] 2. For \( \mathbf{j} \): \[ 10 \cos t \sin t - 10 \sin t \cos t = 0 \] 3. For \( \mathbf{k} \): \[ -5\sqrt{5} \cos^2 t + 5\sqrt{5} \sin^2 t = 5\sqrt{5} (\sin^2 t - \cos^2 t) \] Thus, we have: \[ a \times v = \left\langle 2\sqrt{5} (\sin^2 t - \cos^2 t), 0, 5\sqrt{5} (\sin^2 t - \cos^2 t) \right\rangle \] Next, we calculate the magnitude \( |a \times v| \): \[ |a \times v| = \sqrt{(2\sqrt{5} (\sin^2 t - \cos^2 t))^2 + 0^2 + (5\sqrt{5} (\sin^2 t - \cos^2 t))^2} \] Calculating this: \[ |a \times v| = \sqrt{(4 \cdot 5 (\sin^2 t - \cos^2 t)^2) + (25 \cdot 5 (\sin^2 t - \cos^2 t)^2)} = \sqrt{(4 + 25) \cdot 5 (\sin^2 t - \cos^2 t)^2} = \sqrt{145} |\sin^2 t - \cos^2 t| \] Now, we calculate the magnitude \( |v| \): \[ |v| = \sqrt{(-5 \sin t)^2 + (\sqrt{5} \cos t)^2 + (-2 \sin t)^2} = \sqrt{25 \sin^2 t + 5 \cos^2 t + 4 \sin^2 t} = \sqrt{29 \sin^2 t + 5 \cos^2 t} \] Finally, we substitute these values into the curvature formula: \[ \kappa = \frac{|a \times v|}{|v|^3} = \frac{\sqrt{145} |\sin^2 t - \cos^2 t|}{(29 \sin^2 t + 5 \cos^2 t)^{3/2}} \] Thus, the curvature \( \kappa \) is: \[ \kappa = \frac{\sqrt{145} |\sin^2 t - \cos^2 t|}{(29 \sin^2 t + 5 \cos^2 t)^{3/2}} \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

To find the curvature \( \kappa \) of the parameterized curve given by \( r(t) = \langle 5 \cos t, \sqrt{5} \sin t, 2 \cos t \rangle \), we first need to compute \( a(t) \) (the acceleration vector) and \( v(t) \) (the velocity vector). 1. Compute the velocity \( v(t) = r'(t) \): \[ v(t) = \langle -5 \sin t, \sqrt{5} \cos t, -2 \sin t \rangle \] 2. Compute the acceleration \( a(t) = v'(t) \): \[ a(t) = \langle -5 \cos t, -\sqrt{5} \sin t, -2 \cos t \rangle \] 3. Now, calculate the cross product \( a \times v \): \[ a \times v = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -5 \cos t & -\sqrt{5} \sin t & -2 \cos t \\ -5 \sin t & \sqrt{5} \cos t & -2 \sin t \end{vmatrix} \] Expanding this determinant, we find: \[ a \times v = \mathbf{i} \left( (-\sqrt{5} \sin t)(-2 \sin t) - (-2 \cos t)(\sqrt{5} \cos t) \right) - \mathbf{j} \left( (-5 \cos t)(-2 \sin t) - (-2 \cos t)(-5 \sin t) \right) + \mathbf{k} \left( (-5 \cos t)(\sqrt{5} \cos t) - (-\sqrt{5} \sin t)(-5 \sin t) \right) \] which simplifies to: \[ a \times v = \langle 2\sqrt{5} \sin^2 t - 2\sqrt{5} \cos^2 t, -10 (\sin^2 t - \cos^2 t), -5\sqrt{5} (\cos^2 t + \sin^2 t) \rangle \] Further simplification gives: \[ a \times v = \langle 2\sqrt{5} (\sin^2 t - \cos^2 t), -10 (\sin^2 t - \cos^2 t), -5\sqrt{5} \rangle \] 4. Calculate the magnitude \( |a \times v| \): \( |a \times v| = \sqrt{(2\sqrt{5} (\sin^2 t - \cos^2 t))^2 + (-10 (\sin^2 t - \cos^2 t))^2 + (-5\sqrt{5})^2} \). Putting the terms together leads to: \[ = \sqrt{20(\sin^2 t - \cos^2 t)^2 + 100(\sin^2 t - \cos^2 t)^2 + 125} = \sqrt{120 (\sin^2 t - \cos^2 t)^2 + 125} \] 5. Calculate \( |v| \) and \( |v|^3 \): \[ |v| = \sqrt{(-5 \sin t)^2 + (\sqrt{5} \cos t)^2 + (-2 \sin t)^2} = \sqrt{25 \sin^2 t + 5 \cos^2 t + 4 \sin^2 t} = \sqrt{29 \sin^2 t + 5 \cos^2 t} \] To simplify this can be complex, but knowing we have \( a \times v \) simplifies it. 6. Finally, plug into the curvature formula: \[ \kappa = \frac{|a \times v|}{|v|^3} \] 7. After calculating, we find: \[ \kappa = \frac{\sqrt{120(\sin^2 t - \cos^2 t)^2 + 125}}{(|v|^3)} \] Thus, the curvature \( \kappa \) for the parameterized curve \( r(t) \) is given as: \(\kappa = \frac{\sqrt{120(\sin^2 t - \cos^2 t)^2 + 125}}{

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy