Escribe las raices siguientes en forma de potencia, \( \begin{array}{lllll}\text { i. } \sqrt{144} & \text { iii. } \sqrt[3]{343} & \text { v. } \sqrt{\frac{25}{36}} & \text { vii. } \sqrt[3]{0,027} & \text { ix } \sqrt[20]{b^{2 n-2}} \\ \text { ii. } \sqrt[8]{256} & \text { iv. } \sqrt[5]{32^{4}} & \text { vi. } \sqrt[5]{\left(\frac{1}{32}\right)^{2}} & \text { viii. } \sqrt[x^{2}-y^{2}]{a^{x+y}} & \text { x } \sqrt[3 x^{2}]{c^{3 x^{2}}}\end{array} \)
Upstudy AI Solution
Answer
Solution

Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.

Answered by UpStudy AI and reviewed by a Professional Tutor
Beyond the Answer
¡Vamos a disfrutar de las raíces y las potencias! Aquí están tus raíces expresadas de manera divertida: i. \( \sqrt{144} = 144^{1/2} = 12 \) porque \( 12^2 = 144 \). ii. \( \sqrt[8]{256} = 256^{1/8} = 2 \) porque \( 2^8 = 256 \). iii. \( \sqrt[3]{343} = 343^{1/3} = 7 \) ya que \( 7^3 = 343 \). iv. \( \sqrt[5]{32^{4}} = (32^{4})^{1/5} = 32^{4/5} = 2^{8/5} \). v. \( \sqrt{\frac{25}{36}} = \frac{\sqrt{25}}{\sqrt{36}} = \frac{5}{6} \). vi. \( \sqrt[5]{\left(\frac{1}{32}\right)^{2}} = (32^{-2})^{1/5} = 32^{-2/5} = 2^{-12/5} \). vii. \( \sqrt[3]{0.027} = 0.027^{1/3} = \frac{1}{10} \), ya que \( \left(\frac{1}{10}\right)^3 = 0.027 \). viii. \( \sqrt[x^2 - y^2]{a^{x+y}} = a^{(x+y)/(x^2-y^2)} \). ix. \( \sqrt[20]{b^{2n-2}} = b^{(2n-2)/20} = b^{(n-1)/10} \). x. \( \sqrt[3x^2]{c^{3x^2}} = c^{(3x^2)/(3x^2)} = c \). Espero que te haya divertido esta aventura con potencias y raíces. ¡Matemáticas al poder!