Determine the following: \( a^{4} b^{-9} \cdot a^{2} b^{7} \cdot a^{-5} b^{2} \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Beyond the Answer
Let's simplify the expression \( a^{4} b^{-9} \cdot a^{2} b^{7} \cdot a^{-5} b^{2} \) step by step. First, we can combine the terms with the same base (for \(a\) and \(b\)) separately using the property of exponents that states \( a^m \cdot a^n = a^{m+n} \). For \(a\): \[ a^{4} \cdot a^{2} \cdot a^{-5} = a^{4 + 2 - 5} = a^{1} = a \] Now for \(b\): \[ b^{-9} \cdot b^{7} \cdot b^{2} = b^{-9 + 7 + 2} = b^{0} \] Since \( b^0 = 1 \), we can now combine our results: \[ a^{4} b^{-9} \cdot a^{2} b^{7} \cdot a^{-5} b^{2} = a^{1} \cdot 1 = a \] Thus, the simplified expression is: \[ \boxed{a} \]