Question
upstudy study bank question image url

Find from first principle, the derivatives of \( \sqrt{\text { tan }} \)

Ask by Park Nichols. in Nepal
Nov 11,2024

Upstudy AI Solution

Tutor-Verified Answer

Answer

The derivative of \( \sqrt{\tan(x)} \) is \( \frac{1 + \tan^2(x)}{2\sqrt{\tan(x)}} \).

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Answered by UpStudy AI and reviewed by a Professional Tutor

Bonus Knowledge

To find the derivative of \( f(x) = \sqrt{\tan(x)} \) from first principles, we start with the definition of the derivative: \[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \] Substituting our function into this formula gives: \[ f'(x) = \lim_{h \to 0} \frac{\sqrt{\tan(x + h)} - \sqrt{\tan(x)}}{h} \] To simplify, we can use the conjugate to eliminate the square roots. Multiply the numerator and denominator by the conjugate: \[ f'(x) = \lim_{h \to 0} \frac{\left(\sqrt{\tan(x + h)} - \sqrt{\tan(x)}\right)\left(\sqrt{\tan(x + h)} + \sqrt{\tan(x)}\right)}{h \left(\sqrt{\tan(x + h)} + \sqrt{\tan(x)}\right)} \] This simplifies to: \[ f'(x) = \lim_{h \to 0} \frac{\tan(x + h) - \tan(x)}{h \left(\sqrt{\tan(x + h)} + \sqrt{\tan(x)}\right)} \] The limit of the numerator as \( h \to 0 \) is \( \tan'(x) = \sec^2(x) \). Thus we have: \[ f'(x) = \frac{\sec^2(x)}{\sqrt{\tan(x + h)} + \sqrt{\tan(x)}} \] Taking the limit as \( h \to 0 \) gives us: \[ f'(x) = \frac{\sec^2(x)}{2\sqrt{\tan(x)}} \] So, the derivative of \( \sqrt{\tan(x)} \) is: \[ f'(x) = \frac{\sec^2(x)}{2\sqrt{\tan(x)}} \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy