Rewrite the expressions that follow as the sine or cosine of a single angle and evaluate where possible without a calculator: \( 2.1 \sin 68^{\circ} \cos 22^{\circ} + \cos 68^{\circ} \sin 22^{\circ} \) \( 2.2 \cos 28^{\circ} \cos 2^{\circ} - \sin 28^{\circ} \sin 2^{\circ} \) \( 2.3 \cos 108^{\circ} \cos 188^{\circ} + \sin 252^{\circ} \sin 172^{\circ} \) \( 2.4 \sin 70^{\circ} \cos 10^{\circ} - \cos 80^{\circ} \cos 70^{\circ} \) \( 2.5 \sin 4 x \sin 3 x + \cos 4 x \cos 3 x \) \( 2.6 \sin \left(90^{\circ}-x\right) \cos x + \cos \left(90^{\circ}+x\right) \sin x \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


The Deep Dive
Certainly! Let's address the expressions one by one. **2.1**: We can rewrite \( 2.1 \sin 68^{\circ} \cos 22^{\circ} + \cos 68^{\circ} \sin 22^{\circ} \) using the sine addition formula. This transforms to: \[ \sin(68^\circ + 22^\circ) = \sin(90^\circ) = 1. \] **2.2**: The expression \( 2.2 \cos 28^{\circ} \cos 2^{\circ} - \sin 28^{\circ} \sin 2^{\circ} \) can be rewritten using the cosine subtraction formula: \[ \cos(28^\circ + 2^\circ) = \cos(30^\circ) = \frac{\sqrt{3}}{2}. \] **2.3**: For \( 2.3 \cos 108^{\circ} \cos 188^{\circ} + \sin 252^{\circ} \sin 172^{\circ} \), we apply the cosine addition formula, resulting in: \[ \cos(108^\circ - 188^\circ) = \cos(-80^\circ) = \cos(80^\circ). \] Since \( \cos(80^\circ) \) can be evaluated, we know it to be positive. **2.4**: The expression \( 2.4 \sin 70^{\circ} \cos 10^{\circ} - \cos 80^{\circ} \cos 70^{\circ} \) simplifies using angle subtraction: \[ \sin(70^\circ - 10^\circ) = \sin(60^\circ) = \frac{\sqrt{3}}{2}. \] **2.5**: For \( 2.5 \sin 4x \sin 3x + \cos 4x \cos 3x \), this can be expressed as: \[ \cos(4x - 3x) = \cos(x). \] **2.6**: In \( 2.6 \sin(90^\circ - x) \cos x + \cos(90^\circ + x) \sin x \), we simplify using co-function identities and angle addition, thus yielding: \[ \cos(90^\circ + x - x) = \cos(90^\circ) = 0. \] There you have it! From addition to subtraction, we've navigated through some exciting trigonometric transformations. Shine on with your math skills!