Pregunta

Rewrite the expressions that follow as the sine or cosine of a single angle and evaluate where possible without a calculator: \( 2.1 \sin 68^{\circ} \cos 22^{\circ} + \cos 68^{\circ} \sin 22^{\circ} \) \( 2.2 \cos 28^{\circ} \cos 2^{\circ} - \sin 28^{\circ} \sin 2^{\circ} \) \( 2.3 \cos 108^{\circ} \cos 188^{\circ} + \sin 252^{\circ} \sin 172^{\circ} \) \( 2.4 \sin 70^{\circ} \cos 10^{\circ} - \cos 80^{\circ} \cos 70^{\circ} \) \( 2.5 \sin 4 x \sin 3 x + \cos 4 x \cos 3 x \) \( 2.6 \sin \left(90^{\circ}-x\right) \cos x + \cos \left(90^{\circ}+x\right) \sin x \)

Ask by Pena Stanley. in South Africa
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

- \(2.1 = 1\) - \(2.2 = \frac{\sqrt{3}}{2}\) - \(2.3 = \cos(80^{\circ})\) - \(2.4 = \frac{\sqrt{3}}{2}\) - \(2.5 = \cos(x)\) - \(2.6 = 1\)

Solución

To rewrite the given expressions as the sine or cosine of a single angle, we can use the angle addition and subtraction formulas. Let's go through each expression step by step. ### Expression 2.1 **Expression:** \[ 2.1 \sin 68^{\circ} \cos 22^{\circ} + \cos 68^{\circ} \sin 22^{\circ} \] **Using the sine addition formula:** \[ \sin(a + b) = \sin a \cos b + \cos a \sin b \] Here, \(a = 68^{\circ}\) and \(b = 22^{\circ}\). **Rewriting:** \[ 2.1 = \sin(68^{\circ} + 22^{\circ}) = \sin(90^{\circ}) = 1 \] ### Expression 2.2 **Expression:** \[ 2.2 \cos 28^{\circ} \cos 2^{\circ} - \sin 28^{\circ} \sin 2^{\circ} \] **Using the cosine subtraction formula:** \[ \cos(a + b) = \cos a \cos b - \sin a \sin b \] Here, \(a = 28^{\circ}\) and \(b = 2^{\circ}\). **Rewriting:** \[ 2.2 = \cos(28^{\circ} + 2^{\circ}) = \cos(30^{\circ}) = \frac{\sqrt{3}}{2} \] ### Expression 2.3 **Expression:** \[ 2.3 \cos 108^{\circ} \cos 188^{\circ} + \sin 252^{\circ} \sin 172^{\circ} \] **Using the cosine addition formula:** \[ \cos(a - b) = \cos a \cos b + \sin a \sin b \] Here, \(a = 252^{\circ}\) and \(b = 172^{\circ}\). **Rewriting:** \[ 2.3 = \cos(252^{\circ} - 172^{\circ}) = \cos(80^{\circ}) \] ### Expression 2.4 **Expression:** \[ 2.4 \sin 70^{\circ} \cos 10^{\circ} - \cos 80^{\circ} \cos 70^{\circ} \] **Using the sine subtraction formula:** \[ \sin(a - b) = \sin a \cos b - \cos a \sin b \] Here, \(a = 70^{\circ}\) and \(b = 10^{\circ}\). **Rewriting:** \[ 2.4 = \sin(70^{\circ} - 10^{\circ}) = \sin(60^{\circ}) = \frac{\sqrt{3}}{2} \] ### Expression 2.5 **Expression:** \[ 2.5 \sin 4x \sin 3x + \cos 4x \cos 3x \] **Using the cosine addition formula:** \[ \cos(a - b) = \cos a \cos b + \sin a \sin b \] Here, \(a = 4x\) and \(b = 3x\). **Rewriting:** \[ 2.5 = \cos(4x - 3x) = \cos(x) \] ### Expression 2.6 **Expression:** \[ 2.6 \sin(90^{\circ}-x) \cos x + \cos(90^{\circ}+x) \sin x \] **Using the sine addition formula:** \[ \sin(a + b) = \sin a \cos b + \cos a \sin b \] Here, \(a = 90^{\circ} - x\) and \(b = x\). **Rewriting:** \[ 2.6 = \sin(90^{\circ} - x + x) = \sin(90^{\circ}) = 1 \] ### Summary of Results - \(2.1 = 1\) - \(2.2 = \frac{\sqrt{3}}{2}\) - \(2.3 = \cos(80^{\circ})\) - \(2.4 = \frac{\sqrt{3}}{2}\) - \(2.5 = \cos(x)\) - \(2.6 = 1\)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

Certainly! Let's address the expressions one by one. **2.1**: We can rewrite \( 2.1 \sin 68^{\circ} \cos 22^{\circ} + \cos 68^{\circ} \sin 22^{\circ} \) using the sine addition formula. This transforms to: \[ \sin(68^\circ + 22^\circ) = \sin(90^\circ) = 1. \] **2.2**: The expression \( 2.2 \cos 28^{\circ} \cos 2^{\circ} - \sin 28^{\circ} \sin 2^{\circ} \) can be rewritten using the cosine subtraction formula: \[ \cos(28^\circ + 2^\circ) = \cos(30^\circ) = \frac{\sqrt{3}}{2}. \] **2.3**: For \( 2.3 \cos 108^{\circ} \cos 188^{\circ} + \sin 252^{\circ} \sin 172^{\circ} \), we apply the cosine addition formula, resulting in: \[ \cos(108^\circ - 188^\circ) = \cos(-80^\circ) = \cos(80^\circ). \] Since \( \cos(80^\circ) \) can be evaluated, we know it to be positive. **2.4**: The expression \( 2.4 \sin 70^{\circ} \cos 10^{\circ} - \cos 80^{\circ} \cos 70^{\circ} \) simplifies using angle subtraction: \[ \sin(70^\circ - 10^\circ) = \sin(60^\circ) = \frac{\sqrt{3}}{2}. \] **2.5**: For \( 2.5 \sin 4x \sin 3x + \cos 4x \cos 3x \), this can be expressed as: \[ \cos(4x - 3x) = \cos(x). \] **2.6**: In \( 2.6 \sin(90^\circ - x) \cos x + \cos(90^\circ + x) \sin x \), we simplify using co-function identities and angle addition, thus yielding: \[ \cos(90^\circ + x - x) = \cos(90^\circ) = 0. \] There you have it! From addition to subtraction, we've navigated through some exciting trigonometric transformations. Shine on with your math skills!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad