Question
upstudy study bank question image url

If \( \sin x=0.6 \), evaluate \( 2 \cos x+3 \sin x \) , find \( \cos \theta \)

Ask by Wang Edwards. in Nigeria
Feb 17,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

When sin x = 0.6 and cos x = 0.8, the value of 2 cos x + 3 sin x is 3.4.

Solution

We wish to write the expression   2 cos x + 3 sin x in the form   R cos(x – θ), where R > 0 and θ is an angle (usually taken in the first quadrant). Step 1. Find R. Since a cosine–sine combination can be written as   A cos x + B sin x = R cos(x – θ), we have   R = √(A² + B²). Here A = 2 and B = 3, so   R = √(2² + 3²) = √(4 + 9) = √13. Step 2. Determine cos θ and sin θ. When rewriting the expression as R cos(x – θ), one standard way is to set   cos θ = A/R  and  sin θ = B/R. Thus,   cos θ = 2/√13  and  sin θ = 3/√13. One may also note that tan θ = (sinθ)/(cosθ) = 3/2. Step 3. Rewrite the expression. Therefore, the given expression becomes   2 cos x + 3 sin x = √13 cos(x – θ), with θ satisfying cos θ = 2/√13 and sin θ = 3/√13. Step 4. Use the given sin x = 0.6. Now, if we are also told that sin x = 0.6, then—assuming x lies in an interval where cosine is positive (typically the first quadrant)—we have   cos x = √(1 – sin² x) = √(1 – 0.36) = √0.64 = 0.8. Evaluating the expression directly gives   2 cos x + 3 sin x = 2(0.8) + 3(0.6)           = 1.6 + 1.8           = 3.4. Thus, when sin x = 0.6 (and cos x = 0.8), the value of 2 cos x + 3 sin x is 3.4. Summary of Answers: • When sin x = 0.6 (with cos x = 0.8), 2 cos x + 3 sin x = 3.4. • The angle shift θ is given by cos θ = 2/√13 (and sin θ = 3/√13).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

To find \(2 \cos x + 3 \sin x\) with the given \( \sin x = 0.6\), we first need to find \( \cos x\). Using the Pythagorean identity \( \sin^2 x + \cos^2 x = 1\): \[ \cos^2 x = 1 - \sin^2 x = 1 - (0.6)^2 = 1 - 0.36 = 0.64 \] \[ \cos x = \pm \sqrt{0.64} = \pm 0.8 \] Now, we can substitute \( \sin x = 0.6\) and \( \cos x = \pm 0.8\) into the expression \(2 \cos x + 3 \sin x\): For \( \cos x = 0.8\): \[ 2 \cos x + 3 \sin x = 2(0.8) + 3(0.6) = 1.6 + 1.8 = 3.4 \] For \( \cos x = -0.8\): \[ 2 \cos x + 3 \sin x = 2(-0.8) + 3(0.6) = -1.6 + 1.8 = 0.2 \] Thus, the possible values for \(2 \cos x + 3 \sin x\) are \(3.4\) and \(0.2\). So, depending on the quadrant of \(x\), \( \cos x \) could be \(0.8\) or \(-0.8\).

Related Questions

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy