If \( \sin x=0.6 \), evaluate \( 2 \cos x+3 \sin x \) , find \( \cos \theta \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To find \(2 \cos x + 3 \sin x\) with the given \( \sin x = 0.6\), we first need to find \( \cos x\). Using the Pythagorean identity \( \sin^2 x + \cos^2 x = 1\): \[ \cos^2 x = 1 - \sin^2 x = 1 - (0.6)^2 = 1 - 0.36 = 0.64 \] \[ \cos x = \pm \sqrt{0.64} = \pm 0.8 \] Now, we can substitute \( \sin x = 0.6\) and \( \cos x = \pm 0.8\) into the expression \(2 \cos x + 3 \sin x\): For \( \cos x = 0.8\): \[ 2 \cos x + 3 \sin x = 2(0.8) + 3(0.6) = 1.6 + 1.8 = 3.4 \] For \( \cos x = -0.8\): \[ 2 \cos x + 3 \sin x = 2(-0.8) + 3(0.6) = -1.6 + 1.8 = 0.2 \] Thus, the possible values for \(2 \cos x + 3 \sin x\) are \(3.4\) and \(0.2\). So, depending on the quadrant of \(x\), \( \cos x \) could be \(0.8\) or \(-0.8\).
