Question
upstudy study bank question image url

For the curve defined by \( \vec{r}(t)=\left\langle e^{-t} \cos (t), e^{t} \sin (t)\right\rangle \) find the unit tangent vector, unit normal vector, normal acceleration, and tangential acceleration at \( t=\frac{5 \pi}{6} \) \( \vec{T}\left(\frac{5 \pi}{6}\right)= \) \( \vec{N}\left(\frac{5 \pi}{6}\right)= \) \( a_{T}= \) \( a_{N}= \)

Ask by Peterson Davies. in the United States
Mar 12,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

At \( t = \frac{5\pi}{6} \), the unit tangent vector \( \vec{T}\left(\frac{5\pi}{6}\right) \) is \( \left\langle \frac{\sqrt{3} - 1}{2e^{5\pi/6}}, \frac{1 - \sqrt{3}}{2e^{5\pi/6}} \right\rangle \), the unit normal vector \( \vec{N}\left(\frac{5\pi}{6}\right) \) is \( \left\langle \frac{1 + \sqrt{3}}{2e^{5\pi/6}}, \frac{\sqrt{3} + 1}{2e^{5\pi/6}} \right\rangle \), the tangential acceleration \( a_T \) is \( \frac{1 - \sqrt{3}}{2e^{5\pi/6}} \), and the normal acceleration \( a_N \) is \( \frac{(\sqrt{3} - 1)^2}{4e^{5\pi/3}} \).

Solution

To find the unit tangent vector, unit normal vector, normal acceleration, and tangential acceleration for the curve defined by \[ \vec{r}(t) = \left\langle e^{-t} \cos(t), e^{t} \sin(t) \right\rangle \] at \( t = \frac{5\pi}{6} \), we will follow these steps: 1. **Calculate the derivative \(\vec{r}'(t)\)** to find the velocity vector. 2. **Find the unit tangent vector \(\vec{T}(t)\)**. 3. **Calculate the second derivative \(\vec{r}''(t)\)** to find the acceleration vector. 4. **Find the unit normal vector \(\vec{N}(t)\)**. 5. **Calculate the tangential acceleration \(a_T\)** and normal acceleration \(a_N\). ### Step 1: Calculate \(\vec{r}'(t)\) The derivative of \(\vec{r}(t)\) is given by: \[ \vec{r}'(t) = \left\langle \frac{d}{dt}(e^{-t} \cos(t)), \frac{d}{dt}(e^{t} \sin(t)) \right\rangle \] Using the product rule: \[ \frac{d}{dt}(e^{-t} \cos(t)) = -e^{-t} \cos(t) + e^{-t}(-\sin(t)) = e^{-t}(-\cos(t) - \sin(t)) \] \[ \frac{d}{dt}(e^{t} \sin(t)) = e^{t} \sin(t) + e^{t} \cos(t) = e^{t}(\sin(t) + \cos(t)) \] Thus, \[ \vec{r}'(t) = \left\langle e^{-t}(-\cos(t) - \sin(t)), e^{t}(\sin(t) + \cos(t)) \right\rangle \] ### Step 2: Find the unit tangent vector \(\vec{T}(t)\) The unit tangent vector is given by: \[ \vec{T}(t) = \frac{\vec{r}'(t)}{|\vec{r}'(t)|} \] We need to calculate \(|\vec{r}'(t)|\): \[ |\vec{r}'(t)| = \sqrt{(e^{-t}(-\cos(t) - \sin(t)))^2 + (e^{t}(\sin(t) + \cos(t)))^2} \] ### Step 3: Calculate \(\vec{r}''(t)\) Next, we differentiate \(\vec{r}'(t)\) to find \(\vec{r}''(t)\): \[ \vec{r}''(t) = \left\langle \frac{d}{dt} \left( e^{-t}(-\cos(t) - \sin(t)) \right), \frac{d}{dt} \left( e^{t}(\sin(t) + \cos(t)) \right) \right\rangle \] Calculating these derivatives will give us the acceleration vector. ### Step 4: Find the unit normal vector \(\vec{N}(t)\) The unit normal vector is given by: \[ \vec{N}(t) = \frac{\vec{T}'(t)}{|\vec{T}'(t)|} \] ### Step 5: Calculate \(a_T\) and \(a_N\) The tangential acceleration \(a_T\) is given by: \[ a_T = \vec{T}(t) \cdot \vec{r}''(t) \] The normal acceleration \(a_N\) is given by: \[ a_N = \frac{|\vec{r}'(t)|^2}{R} \] where \(R\) is the radius of curvature. Now, let's perform the calculations for \(t = \frac{5\pi}{6}\). ### Performing the calculations 1. **Calculate \(\vec{r}'\left(\frac{5\pi}{6}\right)\)** and \(\vec{r}''\left(\frac{5\pi}{6}\right)\). 2. **Calculate \(|\vec{r}'\left(\frac{5\pi}{6}\right)|\)**. 3. **Find \(\vec{T}\left(\frac{5\pi}{6}\right)\)**. 4. **Find \(\vec{N}\left(\frac{5\pi}{6}\right)\)**. 5. **Calculate \(a_T\) and \(a_N\)**. Let's compute these values. ### Step 1: Calculate \(\vec{r}'\left(\frac{5\pi}{6}\right)\) Substituting \(t = \frac{5\pi}{6}\): \[ \vec{r}'\left(\frac{5\pi}{6}\right) = \left\langle e^{-\frac{5\pi}{6}}(-\cos(\frac{5\pi}{6}) - \sin(\frac{5\pi}{6})), e^{\frac{5\pi}{6}}(\sin(\frac{5\pi}{6}) + \cos(\frac{5\pi}{6})) \right\rangle \] Calculating \(\cos\left(\frac{5\pi}{6}\right) = -\frac{\sqrt{3}}{2}\) and \(\sin\left(\frac{5\pi}{6}\right) = \frac{1}{2}\): \[ \vec{r}'\left(\frac{5\pi}{6}\right) = \left\langle e^{-\frac{5\pi}{6}}\left(-\left(-\frac{\sqrt{3}}{2}\right) - \frac{1}{2}\right), e^{\frac{5\pi}{6}}\left(\frac{1}{2} - \frac{\sqrt{3}}{2}\right) \right\rangle \] Calculating the components: \[ \vec{r}'\left(\frac{5\pi}{6}\right) = \left\langle e^{-\frac{5\pi}{6}}\left(\frac{\sqrt{3}}{2} - \frac{1}{2}\right), e^{\frac{5\pi}{6}}\left(\frac{1 - \sqrt{3}}{2}\right) \right\rangle \] Now, let's calculate the magnitude \(|\vec{r}'\left(\frac{5\pi}{6}\right)|\) and then find \(\vec{T}\left(\frac{5\pi}{6}\right)\). ### Step 2: Calculate \(|\vec{r}'\left(\frac{5\pi}{6}\right

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

To calculate the unit tangent vector, unit normal vector, normal acceleration, and tangential acceleration for the curve defined by \[ \vec{r}(t)=\left\langle e^{-t} \cos (t), e^{t} \sin (t)\right\rangle, \] at \( t=\frac{5 \pi}{6} \), we follow these steps: 1. **Find the derivative \( \vec{r}'(t) \)**: \[ \vec{r}'(t) = \left\langle \frac{d}{dt}(e^{-t} \cos (t)), \frac{d}{dt}(e^{t} \sin (t))\right\rangle. \] Using the product rule on both components: - The derivative of \( e^{-t} \cos(t) \): \[ \frac{d}{dt}(e^{-t} \cos(t)) = -e^{-t} \cos(t) + e^{-t} (-\sin(t)) = e^{-t}(-\cos(t) - \sin(t)). \] - The derivative of \( e^{t} \sin(t) \): \[ \frac{d}{dt}(e^{t} \sin(t)) = e^{t} \sin(t) + e^{t} \cos(t) = e^{t}(\sin(t) + \cos(t)). \] Thus, \[ \vec{r}'(t) = \left\langle e^{-t}(-\cos(t) - \sin(t)), e^{t}(\sin(t) + \cos(t)) \right\rangle. \] 2. **Evaluate \( \vec{r}'\left(\frac{5 \pi}{6}\right) \)**: - At \( t=\frac{5 \pi}{6} \): \[ \cos\left(\frac{5 \pi}{6}\right) = -\frac{\sqrt{3}}{2}, \quad \sin\left(\frac{5 \pi}{6}\right) = \frac{1}{2}. \] Therefore, \[ \vec{r}'\left(\frac{5 \pi}{6}\right) = \left\langle e^{-\frac{5\pi}{6}}\left(-\left(-\frac{\sqrt{3}}{2}\right) - \frac{1}{2}\right), e^{\frac{5\pi}{6}}\left(\frac{1}{2} - \frac{\sqrt{3}}{2}\right)\right\rangle = \left\langle e^{-\frac{5\pi}{6}}\left(\frac{\sqrt{3}}{2} - \frac{1}{2}\right), e^{\frac{5\pi}{6}}\left(\frac{1}{2} - \frac{\sqrt{3}}{2}\right)\right\rangle. \] 3. **Calculate the magnitude of \( \vec{r}'\left(\frac{5 \pi}{6}\right) \)**: \[ |\vec{r}'\left(\frac{5 \pi}{6}\right)| = \sqrt{(e^{-\frac{5\pi}{6}}(\frac{\sqrt{3}}{2} - \frac{1}{2}))^2 + (e^{\frac{5\pi}{6}}(\frac{1}{2} - \frac{\sqrt{3}}{2}))^2}. \] 4. **Find the unit tangent vector \( \vec{T}\left(\frac{5 \pi}{6}\right) \)**: \[ \vec{T}\left(t\right) = \frac{\vec{r}'(t)}{|\vec{r}'(t)|}. \] 5. **Find the second derivative \( \vec{r}''(t) \)** to proceed: By differentiating \( \vec{r}'(t) \) again. 6. **Get normal and tangential components**: \[ a_T = \vec{r}'(t) \cdot \vec{T}'(t), \quad a_N = \sqrt{(\vec{r}''(t) \cdot \vec{N}(t))^2 + (a_r)^2}. \] Finally calculated values will be, \(\vec{T}\left(\frac{5 \pi}{6}\right) = \text{...}, \quad \vec{N}\left(\frac{5 \pi

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy