For the curve defined by \( \vec{r}(t)=\left\langle e^{-t} \cos (t), e^{t} \sin (t)\right\rangle \) find the unit tangent vector, unit normal vector, normal acceleration, and tangential acceleration at \( t=\frac{5 \pi}{6} \) \( \vec{T}\left(\frac{5 \pi}{6}\right)= \) \( \vec{N}\left(\frac{5 \pi}{6}\right)= \) \( a_{T}= \) \( a_{N}= \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Extra Insights
To calculate the unit tangent vector, unit normal vector, normal acceleration, and tangential acceleration for the curve defined by \[ \vec{r}(t)=\left\langle e^{-t} \cos (t), e^{t} \sin (t)\right\rangle, \] at \( t=\frac{5 \pi}{6} \), we follow these steps: 1. **Find the derivative \( \vec{r}'(t) \)**: \[ \vec{r}'(t) = \left\langle \frac{d}{dt}(e^{-t} \cos (t)), \frac{d}{dt}(e^{t} \sin (t))\right\rangle. \] Using the product rule on both components: - The derivative of \( e^{-t} \cos(t) \): \[ \frac{d}{dt}(e^{-t} \cos(t)) = -e^{-t} \cos(t) + e^{-t} (-\sin(t)) = e^{-t}(-\cos(t) - \sin(t)). \] - The derivative of \( e^{t} \sin(t) \): \[ \frac{d}{dt}(e^{t} \sin(t)) = e^{t} \sin(t) + e^{t} \cos(t) = e^{t}(\sin(t) + \cos(t)). \] Thus, \[ \vec{r}'(t) = \left\langle e^{-t}(-\cos(t) - \sin(t)), e^{t}(\sin(t) + \cos(t)) \right\rangle. \] 2. **Evaluate \( \vec{r}'\left(\frac{5 \pi}{6}\right) \)**: - At \( t=\frac{5 \pi}{6} \): \[ \cos\left(\frac{5 \pi}{6}\right) = -\frac{\sqrt{3}}{2}, \quad \sin\left(\frac{5 \pi}{6}\right) = \frac{1}{2}. \] Therefore, \[ \vec{r}'\left(\frac{5 \pi}{6}\right) = \left\langle e^{-\frac{5\pi}{6}}\left(-\left(-\frac{\sqrt{3}}{2}\right) - \frac{1}{2}\right), e^{\frac{5\pi}{6}}\left(\frac{1}{2} - \frac{\sqrt{3}}{2}\right)\right\rangle = \left\langle e^{-\frac{5\pi}{6}}\left(\frac{\sqrt{3}}{2} - \frac{1}{2}\right), e^{\frac{5\pi}{6}}\left(\frac{1}{2} - \frac{\sqrt{3}}{2}\right)\right\rangle. \] 3. **Calculate the magnitude of \( \vec{r}'\left(\frac{5 \pi}{6}\right) \)**: \[ |\vec{r}'\left(\frac{5 \pi}{6}\right)| = \sqrt{(e^{-\frac{5\pi}{6}}(\frac{\sqrt{3}}{2} - \frac{1}{2}))^2 + (e^{\frac{5\pi}{6}}(\frac{1}{2} - \frac{\sqrt{3}}{2}))^2}. \] 4. **Find the unit tangent vector \( \vec{T}\left(\frac{5 \pi}{6}\right) \)**: \[ \vec{T}\left(t\right) = \frac{\vec{r}'(t)}{|\vec{r}'(t)|}. \] 5. **Find the second derivative \( \vec{r}''(t) \)** to proceed: By differentiating \( \vec{r}'(t) \) again. 6. **Get normal and tangential components**: \[ a_T = \vec{r}'(t) \cdot \vec{T}'(t), \quad a_N = \sqrt{(\vec{r}''(t) \cdot \vec{N}(t))^2 + (a_r)^2}. \] Finally calculated values will be, \(\vec{T}\left(\frac{5 \pi}{6}\right) = \text{...}, \quad \vec{N}\left(\frac{5 \pi