Pregunta
upstudy study bank question image url

For the curve defined by \( \vec{r}(t)=\left\langle e^{-t} \cos (t), e^{t} \sin (t)\right\rangle \) find the unit tangent vector, unit normal vector, normal acceleration, and tangential acceleration at \( t=\frac{5 \pi}{6} \) \( \vec{T}\left(\frac{5 \pi}{6}\right)= \) \( \vec{N}\left(\frac{5 \pi}{6}\right)= \) \( a_{T}= \) \( a_{N}= \)

Ask by Peterson Davies. in the United States
Mar 12,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

At \( t = \frac{5\pi}{6} \), the unit tangent vector \( \vec{T}\left(\frac{5\pi}{6}\right) \) is \( \left\langle \frac{\sqrt{3} - 1}{2e^{5\pi/6}}, \frac{1 - \sqrt{3}}{2e^{5\pi/6}} \right\rangle \), the unit normal vector \( \vec{N}\left(\frac{5\pi}{6}\right) \) is \( \left\langle \frac{1 + \sqrt{3}}{2e^{5\pi/6}}, \frac{\sqrt{3} + 1}{2e^{5\pi/6}} \right\rangle \), the tangential acceleration \( a_T \) is \( \frac{1 - \sqrt{3}}{2e^{5\pi/6}} \), and the normal acceleration \( a_N \) is \( \frac{(\sqrt{3} - 1)^2}{4e^{5\pi/3}} \).

Solución

To find the unit tangent vector, unit normal vector, normal acceleration, and tangential acceleration for the curve defined by \[ \vec{r}(t) = \left\langle e^{-t} \cos(t), e^{t} \sin(t) \right\rangle \] at \( t = \frac{5\pi}{6} \), we will follow these steps: 1. **Calculate the derivative \(\vec{r}'(t)\)** to find the velocity vector. 2. **Find the unit tangent vector \(\vec{T}(t)\)**. 3. **Calculate the second derivative \(\vec{r}''(t)\)** to find the acceleration vector. 4. **Find the unit normal vector \(\vec{N}(t)\)**. 5. **Calculate the tangential acceleration \(a_T\)** and normal acceleration \(a_N\). ### Step 1: Calculate \(\vec{r}'(t)\) The derivative of \(\vec{r}(t)\) is given by: \[ \vec{r}'(t) = \left\langle \frac{d}{dt}(e^{-t} \cos(t)), \frac{d}{dt}(e^{t} \sin(t)) \right\rangle \] Using the product rule: \[ \frac{d}{dt}(e^{-t} \cos(t)) = -e^{-t} \cos(t) + e^{-t}(-\sin(t)) = e^{-t}(-\cos(t) - \sin(t)) \] \[ \frac{d}{dt}(e^{t} \sin(t)) = e^{t} \sin(t) + e^{t} \cos(t) = e^{t}(\sin(t) + \cos(t)) \] Thus, \[ \vec{r}'(t) = \left\langle e^{-t}(-\cos(t) - \sin(t)), e^{t}(\sin(t) + \cos(t)) \right\rangle \] ### Step 2: Find the unit tangent vector \(\vec{T}(t)\) The unit tangent vector is given by: \[ \vec{T}(t) = \frac{\vec{r}'(t)}{|\vec{r}'(t)|} \] We need to calculate \(|\vec{r}'(t)|\): \[ |\vec{r}'(t)| = \sqrt{(e^{-t}(-\cos(t) - \sin(t)))^2 + (e^{t}(\sin(t) + \cos(t)))^2} \] ### Step 3: Calculate \(\vec{r}''(t)\) Next, we differentiate \(\vec{r}'(t)\) to find \(\vec{r}''(t)\): \[ \vec{r}''(t) = \left\langle \frac{d}{dt} \left( e^{-t}(-\cos(t) - \sin(t)) \right), \frac{d}{dt} \left( e^{t}(\sin(t) + \cos(t)) \right) \right\rangle \] Calculating these derivatives will give us the acceleration vector. ### Step 4: Find the unit normal vector \(\vec{N}(t)\) The unit normal vector is given by: \[ \vec{N}(t) = \frac{\vec{T}'(t)}{|\vec{T}'(t)|} \] ### Step 5: Calculate \(a_T\) and \(a_N\) The tangential acceleration \(a_T\) is given by: \[ a_T = \vec{T}(t) \cdot \vec{r}''(t) \] The normal acceleration \(a_N\) is given by: \[ a_N = \frac{|\vec{r}'(t)|^2}{R} \] where \(R\) is the radius of curvature. Now, let's perform the calculations for \(t = \frac{5\pi}{6}\). ### Performing the calculations 1. **Calculate \(\vec{r}'\left(\frac{5\pi}{6}\right)\)** and \(\vec{r}''\left(\frac{5\pi}{6}\right)\). 2. **Calculate \(|\vec{r}'\left(\frac{5\pi}{6}\right)|\)**. 3. **Find \(\vec{T}\left(\frac{5\pi}{6}\right)\)**. 4. **Find \(\vec{N}\left(\frac{5\pi}{6}\right)\)**. 5. **Calculate \(a_T\) and \(a_N\)**. Let's compute these values. ### Step 1: Calculate \(\vec{r}'\left(\frac{5\pi}{6}\right)\) Substituting \(t = \frac{5\pi}{6}\): \[ \vec{r}'\left(\frac{5\pi}{6}\right) = \left\langle e^{-\frac{5\pi}{6}}(-\cos(\frac{5\pi}{6}) - \sin(\frac{5\pi}{6})), e^{\frac{5\pi}{6}}(\sin(\frac{5\pi}{6}) + \cos(\frac{5\pi}{6})) \right\rangle \] Calculating \(\cos\left(\frac{5\pi}{6}\right) = -\frac{\sqrt{3}}{2}\) and \(\sin\left(\frac{5\pi}{6}\right) = \frac{1}{2}\): \[ \vec{r}'\left(\frac{5\pi}{6}\right) = \left\langle e^{-\frac{5\pi}{6}}\left(-\left(-\frac{\sqrt{3}}{2}\right) - \frac{1}{2}\right), e^{\frac{5\pi}{6}}\left(\frac{1}{2} - \frac{\sqrt{3}}{2}\right) \right\rangle \] Calculating the components: \[ \vec{r}'\left(\frac{5\pi}{6}\right) = \left\langle e^{-\frac{5\pi}{6}}\left(\frac{\sqrt{3}}{2} - \frac{1}{2}\right), e^{\frac{5\pi}{6}}\left(\frac{1 - \sqrt{3}}{2}\right) \right\rangle \] Now, let's calculate the magnitude \(|\vec{r}'\left(\frac{5\pi}{6}\right)|\) and then find \(\vec{T}\left(\frac{5\pi}{6}\right)\). ### Step 2: Calculate \(|\vec{r}'\left(\frac{5\pi}{6}\right

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To calculate the unit tangent vector, unit normal vector, normal acceleration, and tangential acceleration for the curve defined by \[ \vec{r}(t)=\left\langle e^{-t} \cos (t), e^{t} \sin (t)\right\rangle, \] at \( t=\frac{5 \pi}{6} \), we follow these steps: 1. **Find the derivative \( \vec{r}'(t) \)**: \[ \vec{r}'(t) = \left\langle \frac{d}{dt}(e^{-t} \cos (t)), \frac{d}{dt}(e^{t} \sin (t))\right\rangle. \] Using the product rule on both components: - The derivative of \( e^{-t} \cos(t) \): \[ \frac{d}{dt}(e^{-t} \cos(t)) = -e^{-t} \cos(t) + e^{-t} (-\sin(t)) = e^{-t}(-\cos(t) - \sin(t)). \] - The derivative of \( e^{t} \sin(t) \): \[ \frac{d}{dt}(e^{t} \sin(t)) = e^{t} \sin(t) + e^{t} \cos(t) = e^{t}(\sin(t) + \cos(t)). \] Thus, \[ \vec{r}'(t) = \left\langle e^{-t}(-\cos(t) - \sin(t)), e^{t}(\sin(t) + \cos(t)) \right\rangle. \] 2. **Evaluate \( \vec{r}'\left(\frac{5 \pi}{6}\right) \)**: - At \( t=\frac{5 \pi}{6} \): \[ \cos\left(\frac{5 \pi}{6}\right) = -\frac{\sqrt{3}}{2}, \quad \sin\left(\frac{5 \pi}{6}\right) = \frac{1}{2}. \] Therefore, \[ \vec{r}'\left(\frac{5 \pi}{6}\right) = \left\langle e^{-\frac{5\pi}{6}}\left(-\left(-\frac{\sqrt{3}}{2}\right) - \frac{1}{2}\right), e^{\frac{5\pi}{6}}\left(\frac{1}{2} - \frac{\sqrt{3}}{2}\right)\right\rangle = \left\langle e^{-\frac{5\pi}{6}}\left(\frac{\sqrt{3}}{2} - \frac{1}{2}\right), e^{\frac{5\pi}{6}}\left(\frac{1}{2} - \frac{\sqrt{3}}{2}\right)\right\rangle. \] 3. **Calculate the magnitude of \( \vec{r}'\left(\frac{5 \pi}{6}\right) \)**: \[ |\vec{r}'\left(\frac{5 \pi}{6}\right)| = \sqrt{(e^{-\frac{5\pi}{6}}(\frac{\sqrt{3}}{2} - \frac{1}{2}))^2 + (e^{\frac{5\pi}{6}}(\frac{1}{2} - \frac{\sqrt{3}}{2}))^2}. \] 4. **Find the unit tangent vector \( \vec{T}\left(\frac{5 \pi}{6}\right) \)**: \[ \vec{T}\left(t\right) = \frac{\vec{r}'(t)}{|\vec{r}'(t)|}. \] 5. **Find the second derivative \( \vec{r}''(t) \)** to proceed: By differentiating \( \vec{r}'(t) \) again. 6. **Get normal and tangential components**: \[ a_T = \vec{r}'(t) \cdot \vec{T}'(t), \quad a_N = \sqrt{(\vec{r}''(t) \cdot \vec{N}(t))^2 + (a_r)^2}. \] Finally calculated values will be, \(\vec{T}\left(\frac{5 \pi}{6}\right) = \text{...}, \quad \vec{N}\left(\frac{5 \pi

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad