Question
upstudy study bank question image url

15) \( \frac{8 x^{3}-3 x-6 x^{4}-2 x^{2}-1}{3 x+4} \)

Ask by West Marshall. in Mexico
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

El cociente es –2x³ + (16⁄3)x² – (70⁄9)x + 253⁄27 y el residuo es –1039⁄27.

Solution

Procedamos a realizar la división del polinomio   8x³ – 3x – 6x⁴ – 2x² – 1 entre   3x + 4. En primer lugar, ordenamos el numerador en forma decreciente de potencias de x:   –6x⁴ + 8x³ – 2x² – 3x – 1. Ahora dividiremos mediante división larga de polinomios. ───────────────────────────── 1) Dividimos el término de mayor grado del numerador por el término de mayor grado del divisor:   –6x⁴ ÷ 3x = –2x³. Multiplicamos el divisor por –2x³:   (–2x³)(3x + 4) = –6x⁴ – 8x³. Restamos este resultado del numerador:   [ –6x⁴ + 8x³ ] – [ –6x⁴ – 8x³ ] = 16x³. El residuo se actualiza incluyendo los siguientes términos:   16x³ – 2x² – 3x – 1. ───────────────────────────── 2) Dividimos el nuevo término de mayor grado:   16x³ ÷ 3x = (16/3)x². Multiplicamos el divisor por (16/3)x²:   (16/3)x²·(3x + 4) = 16x³ + (64/3)x². Restamos:   [16x³ – 2x²] – [16x³ + (64/3)x²] = –2x² – (64/3)x².   Convertimos –2x² = –(6/3)x², por lo que:   –(6/3 + 64/3)x² = –(70/3)x². Actualizamos el residuo:   –(70/3)x² – 3x – 1. ───────────────────────────── 3) Dividimos el nuevo término de mayor grado:   –(70/3)x² ÷ 3x = –(70/9)x. Multiplicamos el divisor por –(70/9)x:   –(70/9)x·(3x + 4) = –(70/3)x² – (280/9)x. Restamos:   [–(70/3)x² – 3x] – [–(70/3)x² – (280/9)x] = –3x + (280/9)x.   Convierte –3x = –(27/9)x para obtener:   (280/9 – 27/9)x = (253/9)x. Actualizamos el residuo:   (253/9)x – 1. ───────────────────────────── 4) Dividimos el término de mayor grado del residuo:   (253/9)x ÷ 3x = 253/27. Multiplicamos el divisor por 253/27:   (253/27)(3x + 4) = (253/9)x + (1012/27). Restamos:   [(253/9)x – 1] – [(253/9)x + (1012/27)] = –1 – (1012/27). Para combinar –1 con –1012/27, escribimos –1 como –27/27:   –27/27 – 1012/27 = –(27 + 1012)/27 = –1039/27. ───────────────────────────── Quedan terminados los términos, ya que el siguiente residuo es de menor grado que el divisor. Por lo tanto, el cociente (Q(x)) es:   –2x³ + (16/3)x² – (70/9)x + 253/27 y el residuo (R(x)) es:   –1039/27. La expresión inicial se puede escribir en forma de división de polinomios:   (8x³ – 3x – 6x⁴ – 2x² – 1)/(3x + 4) = –2x³ + (16/3)x² – (70/9)x + 253/27 – (1039/27)/(3x + 4). Esta es la respuesta final.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

To simplify the expression \( \frac{8 x^{3}-3 x-6 x^{4}-2 x^{2}-1}{3 x+4} \), we first rearrange the terms in descending order of the power of \( x \): \[ \frac{-6 x^{4} + 8 x^{3} - 2 x^{2} - 3 x - 1}{3 x + 4} \] Next, we can use polynomial long division to divide the numerator by the denominator, \( 3x + 4 \). As we perform the division step by step, we start by dividing the leading term of the numerator by the leading term of the denominator. 1. Divide \( -6x^4 \) by \( 3x \) to get \( -2x^3 \). 2. Multiply \( -2x^3 \) by \( 3x + 4 \) to obtain \( -6x^4 - 8x^3 \). 3. Subtract this from the original numerator \( -6x^4 + 8x^3 - 2x^2 - 3x - 1 \) to yield \( 16x^3 - 2x^2 - 3x - 1 \). 4. Repeat the process for \( 16x^3 \) divided by \( 3x \) to get \( \frac{16}{3}x^2 \). 5. Continuing this iterative process allows us to simplify further until we reach a remainder. Finally, the complete division provides us with the quotient, which simplifies until we have a polynomial outcome plus a remainder divided by \( 3x + 4 \). To sum it up, the solution can be expressed as: \[ -2x^3 + \frac{16}{3}x^2 + ... + \text{(remainder)} \] By keeping track of each step, you can simplify higher degree polynomial fractions more confidently!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy