Answer
Here are the simplified forms of the given expressions:
1. \( \frac{4x + 1}{6} \)
2. \( \frac{(21y - 4)x^2 + 6y}{18x^3y} \)
3. \( \frac{3x + 2}{x^2} \)
4. \( \frac{3}{2} \)
5. \( \frac{5 - 3y(x + 2)}{6xy} \)
6. \( \frac{-2x^2 + 3x - 10}{2x(x - 2)} \)
7. \( \frac{7x + 2}{x(x + 1)} \)
8. \( \frac{-5x^2 + 4x - 8}{(x^2 + 2)(x + 2)} \)
9. \( \frac{-12x}{(x + 3)(x - 3)} \)
10. \( \frac{-2x^2 - 3x + 3}{(2x + 1)^2} \)
11. \( \frac{1}{6} \)
If you need further assistance or specific calculations, feel free to ask!
Solution
To solve the given expressions, we will simplify each one step by step. Let's go through them one by one.
### Expression (1)
\[
\frac{2x}{3} + \frac{1}{6}
\]
To combine these fractions, we need a common denominator. The least common multiple of 3 and 6 is 6.
\[
\frac{2x}{3} = \frac{2x \cdot 2}{3 \cdot 2} = \frac{4x}{6}
\]
Now we can add:
\[
\frac{4x}{6} + \frac{1}{6} = \frac{4x + 1}{6}
\]
### Expression (2)
\[
\frac{7}{6x} - \frac{2}{9xy} + \frac{1}{3x^3}
\]
The common denominator for \(6x\), \(9xy\), and \(3x^3\) is \(18x^3y\).
Rewriting each term:
\[
\frac{7}{6x} = \frac{7 \cdot 3x^2y}{18x^3y} = \frac{21x^2y}{18x^3y}
\]
\[
\frac{2}{9xy} = \frac{2 \cdot 2x^2}{18x^3y} = \frac{4x^2}{18x^3y}
\]
\[
\frac{1}{3x^3} = \frac{1 \cdot 6y}{18x^3y} = \frac{6y}{18x^3y}
\]
Now combine:
\[
\frac{21x^2y - 4x^2 + 6y}{18x^3y} = \frac{(21y - 4)x^2 + 6y}{18x^3y}
\]
### Expression (3)
\[
\frac{3}{x} + \frac{2}{x^2}
\]
The common denominator is \(x^2\):
\[
\frac{3}{x} = \frac{3x}{x^2}
\]
Now combine:
\[
\frac{3x + 2}{x^2}
\]
### Expression (4)
\[
1 + a - \frac{2a - 1}{2}
\]
Rewriting:
\[
1 + a - \frac{2a - 1}{2} = 1 + a - (a - \frac{1}{2}) = 1 + \frac{1}{2} = \frac{3}{2}
\]
### Expression (5)
\[
\frac{5}{6xy} - \frac{x + 2}{2x}
\]
The common denominator is \(6xy\):
\[
\frac{5}{6xy} - \frac{(x + 2) \cdot 3y}{6xy} = \frac{5 - 3y(x + 2)}{6xy}
\]
### Expression (6)
\[
\frac{5}{2x} - \frac{x + 1}{x - 2}
\]
The common denominator is \(2x(x - 2)\):
\[
\frac{5(x - 2) - 2x(x + 1)}{2x(x - 2)} = \frac{5x - 10 - 2x^2 - 2x}{2x(x - 2)} = \frac{-2x^2 + 3x - 10}{2x(x - 2)}
\]
### Expression (7)
\[
\frac{2}{x} + \frac{5}{x + 1}
\]
The common denominator is \(x(x + 1)\):
\[
\frac{2(x + 1) + 5x}{x(x + 1)} = \frac{2x + 2 + 5x}{x(x + 1)} = \frac{7x + 2}{x(x + 1)}
\]
### Expression (8)
\[
\frac{x + 2}{x^2 + 2} - \frac{6}{x + 2}
\]
The common denominator is \((x^2 + 2)(x + 2)\):
\[
\frac{(x + 2)^2 - 6(x^2 + 2)}{(x^2 + 2)(x + 2)} = \frac{x^2 + 4x + 4 - 6x^2 - 12}{(x^2 + 2)(x + 2)} = \frac{-5x^2 + 4x - 8}{(x^2 + 2)(x + 2)}
\]
### Expression (9)
\[
\frac{x - 3}{x + 3} - \frac{x + 3}{x - 3}
\]
The common denominator is \((x + 3)(x - 3)\):
\[
\frac{(x - 3)^2 - (x + 3)^2}{(x + 3)(x - 3)} = \frac{x^2 - 6x + 9 - (x^2 + 6x + 9)}{(x + 3)(x - 3)} = \frac{-12x}{(x + 3)(x - 3)}
\]
### Expression (10)
\[
\frac{4}{(2x + 1)^2} - \frac{x + 1}{2x + 1}
\]
The common denominator is \((2x + 1)^2\):
\[
\frac{4 - (x + 1)(2x + 1)}{(2x + 1)^2} = \frac{4 - (2x^2 + 3x + 1)}{(2x + 1)^2} = \frac{-2x^2 - 3x + 3}{(2x + 1)^2}
\]
### Expression (11)
\[
\frac{x - 3}{3} - \frac{x - 2}{2} + \frac{x + 1}{6}
\]
The common denominator is 6:
\[
\frac{2(x - 3) - 3(x - 2) + (x + 1)}{6} = \frac{2x - 6 - 3x + 6 + x + 1}{6} = \frac{0x + 1}{6} = \frac{1}{6}
\]
Now we have simplified all the expressions. If you need further assistance or specific calculations, please let me know!
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution