Pregunta
upstudy study bank question image url

\( \begin{array}{lll}\text { (1) } \frac{2 x}{3}+\frac{1}{6} & \text { (6) } \frac{5}{2 x}-\frac{x+1}{x-2} & \text { (10) } \frac{4}{(2 x+1)^{2}}-\frac{x+1}{2 x+1} \\ \begin{array}{lll}\text { (2) } \frac{7}{6 x}-\frac{2}{9 x y}+\frac{1}{3 x^{3}} & \text { (7) } \frac{2}{x}+\frac{5}{x+1} & \text { (1i) } \frac{2}{2 x y}+\frac{7 x+1}{4 x^{2} y}-\frac{5 x y+1}{4} \\ \text { (3) } \frac{3}{x}+\frac{2}{x^{2}} & \text { (8) } \frac{x+2}{x^{2}+2}-\frac{6}{x+2} & \text { (12) } \frac{x-3}{3}-\frac{x-2}{2}+\frac{x+1}{6} \\ \text { (4) } 1+a-\frac{2 a-1}{2} & \text { (9) } \frac{x-3}{x+3}-\frac{x+3}{x-3} & \text { (3) } x-\frac{2 x}{3 x-2} \\ \text { (5) } \frac{5}{6 x y}-\frac{x+2}{2 x} & & \end{array}\end{array} \)

Ask by Barber Nichols. in South Africa
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Here are the simplified forms of the given expressions: 1. \( \frac{4x + 1}{6} \) 2. \( \frac{(21y - 4)x^2 + 6y}{18x^3y} \) 3. \( \frac{3x + 2}{x^2} \) 4. \( \frac{3}{2} \) 5. \( \frac{5 - 3y(x + 2)}{6xy} \) 6. \( \frac{-2x^2 + 3x - 10}{2x(x - 2)} \) 7. \( \frac{7x + 2}{x(x + 1)} \) 8. \( \frac{-5x^2 + 4x - 8}{(x^2 + 2)(x + 2)} \) 9. \( \frac{-12x}{(x + 3)(x - 3)} \) 10. \( \frac{-2x^2 - 3x + 3}{(2x + 1)^2} \) 11. \( \frac{1}{6} \) If you need further assistance or specific calculations, feel free to ask!

Solución

To solve the given expressions, we will simplify each one step by step. Let's go through them one by one. ### Expression (1) \[ \frac{2x}{3} + \frac{1}{6} \] To combine these fractions, we need a common denominator. The least common multiple of 3 and 6 is 6. \[ \frac{2x}{3} = \frac{2x \cdot 2}{3 \cdot 2} = \frac{4x}{6} \] Now we can add: \[ \frac{4x}{6} + \frac{1}{6} = \frac{4x + 1}{6} \] ### Expression (2) \[ \frac{7}{6x} - \frac{2}{9xy} + \frac{1}{3x^3} \] The common denominator for \(6x\), \(9xy\), and \(3x^3\) is \(18x^3y\). Rewriting each term: \[ \frac{7}{6x} = \frac{7 \cdot 3x^2y}{18x^3y} = \frac{21x^2y}{18x^3y} \] \[ \frac{2}{9xy} = \frac{2 \cdot 2x^2}{18x^3y} = \frac{4x^2}{18x^3y} \] \[ \frac{1}{3x^3} = \frac{1 \cdot 6y}{18x^3y} = \frac{6y}{18x^3y} \] Now combine: \[ \frac{21x^2y - 4x^2 + 6y}{18x^3y} = \frac{(21y - 4)x^2 + 6y}{18x^3y} \] ### Expression (3) \[ \frac{3}{x} + \frac{2}{x^2} \] The common denominator is \(x^2\): \[ \frac{3}{x} = \frac{3x}{x^2} \] Now combine: \[ \frac{3x + 2}{x^2} \] ### Expression (4) \[ 1 + a - \frac{2a - 1}{2} \] Rewriting: \[ 1 + a - \frac{2a - 1}{2} = 1 + a - (a - \frac{1}{2}) = 1 + \frac{1}{2} = \frac{3}{2} \] ### Expression (5) \[ \frac{5}{6xy} - \frac{x + 2}{2x} \] The common denominator is \(6xy\): \[ \frac{5}{6xy} - \frac{(x + 2) \cdot 3y}{6xy} = \frac{5 - 3y(x + 2)}{6xy} \] ### Expression (6) \[ \frac{5}{2x} - \frac{x + 1}{x - 2} \] The common denominator is \(2x(x - 2)\): \[ \frac{5(x - 2) - 2x(x + 1)}{2x(x - 2)} = \frac{5x - 10 - 2x^2 - 2x}{2x(x - 2)} = \frac{-2x^2 + 3x - 10}{2x(x - 2)} \] ### Expression (7) \[ \frac{2}{x} + \frac{5}{x + 1} \] The common denominator is \(x(x + 1)\): \[ \frac{2(x + 1) + 5x}{x(x + 1)} = \frac{2x + 2 + 5x}{x(x + 1)} = \frac{7x + 2}{x(x + 1)} \] ### Expression (8) \[ \frac{x + 2}{x^2 + 2} - \frac{6}{x + 2} \] The common denominator is \((x^2 + 2)(x + 2)\): \[ \frac{(x + 2)^2 - 6(x^2 + 2)}{(x^2 + 2)(x + 2)} = \frac{x^2 + 4x + 4 - 6x^2 - 12}{(x^2 + 2)(x + 2)} = \frac{-5x^2 + 4x - 8}{(x^2 + 2)(x + 2)} \] ### Expression (9) \[ \frac{x - 3}{x + 3} - \frac{x + 3}{x - 3} \] The common denominator is \((x + 3)(x - 3)\): \[ \frac{(x - 3)^2 - (x + 3)^2}{(x + 3)(x - 3)} = \frac{x^2 - 6x + 9 - (x^2 + 6x + 9)}{(x + 3)(x - 3)} = \frac{-12x}{(x + 3)(x - 3)} \] ### Expression (10) \[ \frac{4}{(2x + 1)^2} - \frac{x + 1}{2x + 1} \] The common denominator is \((2x + 1)^2\): \[ \frac{4 - (x + 1)(2x + 1)}{(2x + 1)^2} = \frac{4 - (2x^2 + 3x + 1)}{(2x + 1)^2} = \frac{-2x^2 - 3x + 3}{(2x + 1)^2} \] ### Expression (11) \[ \frac{x - 3}{3} - \frac{x - 2}{2} + \frac{x + 1}{6} \] The common denominator is 6: \[ \frac{2(x - 3) - 3(x - 2) + (x + 1)}{6} = \frac{2x - 6 - 3x + 6 + x + 1}{6} = \frac{0x + 1}{6} = \frac{1}{6} \] Now we have simplified all the expressions. If you need further assistance or specific calculations, please let me know!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Did you know that the concept of fractions dates back thousands of years, with the ancient Egyptians using them in their mathematics as early as 3000 BC? They developed a system of fractional notation that included unit fractions, which are fractions with a numerator of one, making them quite unique! This early understanding laid the groundwork for the algebraic manipulation of fractions we learn and use today. In real-world applications, fractions are everywhere! Whether you're cooking and need to adjust a recipe, splitting a bill among friends, or even managing finances through budgeting, understanding how to work with fractions is essential. It helps you make accurate calculations and ensures fair distributions, making life just a bit easier and more enjoyable!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad