Answer
a. \( \frac{1}{a^{3}} \)
b. \( f^{10} \)
c. \( x^{13} \)
d. \( b^{9} \)
e. \( e^{9} \)
f. \( 1 \)
Solution
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(x^{5}\right)^{3}}{x^{2}}\)
- step1: Multiply the exponents:
\(\frac{x^{5\times 3}}{x^{2}}\)
- step2: Multiply the numbers:
\(\frac{x^{15}}{x^{2}}\)
- step3: Reduce the fraction:
\(\frac{x^{15-2}}{1}\)
- step4: Simplify:
\(x^{15-2}\)
- step5: Divide the terms:
\(x^{13}\)
Calculate or simplify the expression \( (a^5 / a^3) / a^5 \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(\frac{a^{5}}{a^{3}}\right)}{a^{5}}\)
- step1: Remove the parentheses:
\(\frac{\frac{a^{5}}{a^{3}}}{a^{5}}\)
- step2: Divide the terms:
\(\frac{a^{2}}{a^{5}}\)
- step3: Reduce the fraction:
\(\frac{1}{a^{5-2}}\)
- step4: Reduce the fraction:
\(\frac{1}{a^{3}}\)
Calculate or simplify the expression \( (h^7 / h^3) / (h^2)^2 \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(\frac{h^{7}}{h^{3}}\right)}{\left(h^{2}\right)^{2}}\)
- step1: Remove the parentheses:
\(\frac{\frac{h^{7}}{h^{3}}}{\left(h^{2}\right)^{2}}\)
- step2: Multiply the exponents:
\(\frac{\frac{h^{7}}{h^{3}}}{h^{2\times 2}}\)
- step3: Multiply the numbers:
\(\frac{\frac{h^{7}}{h^{3}}}{h^{4}}\)
- step4: Divide the terms:
\(\frac{h^{4}}{h^{4}}\)
- step5: Divide the terms:
\(1\)
Calculate or simplify the expression \( (f^9)^2 / f^8 \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(f^{9}\right)^{2}}{f^{8}}\)
- step1: Multiply the exponents:
\(\frac{f^{9\times 2}}{f^{8}}\)
- step2: Multiply the numbers:
\(\frac{f^{18}}{f^{8}}\)
- step3: Reduce the fraction:
\(\frac{f^{18-8}}{1}\)
- step4: Simplify:
\(f^{18-8}\)
- step5: Divide the terms:
\(f^{10}\)
Calculate or simplify the expression \( b^8 / b^2 * b^3 \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{b^{8}}{b^{2}}\times b^{3}\)
- step1: Divide the terms:
\(b^{6}\times b^{3}\)
- step2: Simplify the expression:
\(b^{6+3}\)
- step3: Add the numbers:
\(b^{9}\)
Calculate or simplify the expression \( (e^6)^2 / e^4 * e \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{\left(e^{6}\right)^{2}}{e^{4}}\times e\)
- step1: Multiply the exponents:
\(\frac{e^{6\times 2}}{e^{4}}\times e\)
- step2: Multiply by \(a^{-n}:\)
\(e^{6\times 2}\times e^{-4}\times e\)
- step3: Multiply the numbers:
\(e^{12}\times e^{-4}\times e\)
- step4: Multiply the terms:
\(e^{12-4+1}\)
- step5: Calculate:
\(e^{9}\)
Let's simplify each expression step by step using the laws of exponents.
### a.
\[
\frac{a^{5} \div a^{3}}{a^{5}}
\]
Using the law of exponents \( \frac{a^m}{a^n} = a^{m-n} \):
\[
= \frac{a^{5-3}}{a^{5}} = \frac{a^{2}}{a^{5}} = a^{2-5} = a^{-3} = \frac{1}{a^{3}}
\]
### b.
\[
\frac{\left(f^{9}\right)^{2}}{f^{8}}
\]
Using the power of a power law \( (a^m)^n = a^{m \cdot n} \):
\[
= \frac{f^{9 \cdot 2}}{f^{8}} = \frac{f^{18}}{f^{8}} = f^{18-8} = f^{10}
\]
### c.
\[
\left(x^{5}\right)^{3} \div x^{2}
\]
Using the power of a power law and the division law:
\[
= \frac{x^{5 \cdot 3}}{x^{2}} = \frac{x^{15}}{x^{2}} = x^{15-2} = x^{13}
\]
### d.
\[
\frac{b^{8}}{b^{2}} \times b^{3}
\]
Using the division law and then multiplication:
\[
= b^{8-2} \times b^{3} = b^{6} \times b^{3} = b^{6+3} = b^{9}
\]
### e.
\[
\frac{\left(e^{6}\right)^{2}}{e^{4}} \times e
\]
Using the power of a power law and then the division law:
\[
= \frac{e^{6 \cdot 2}}{e^{4}} \times e = \frac{e^{12}}{e^{4}} \times e = e^{12-4} \times e = e^{8} \times e = e^{8+1} = e^{9}
\]
### f.
\[
\frac{h^{7} \div h^{3}}{\left(h^{2}\right)^{2}}
\]
Using the division law and the power of a power law:
\[
= \frac{h^{7-3}}{h^{2 \cdot 2}} = \frac{h^{4}}{h^{4}} = h^{4-4} = h^{0} = 1
\]
### Summary of Results:
- a. \( \frac{1}{a^{3}} \)
- b. \( f^{10} \)
- c. \( x^{13} \)
- d. \( b^{9} \)
- e. \( e^{9} \)
- f. \( 1 \)
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution