Question
upstudy study bank question image url

1. Use the laws of exponents to simplify the following: a. \( \frac{a^{5} \div a^{3}}{a^{5}}= \) b. \( \frac{\left(f^{9}\right)^{2}}{f^{8}}= \) \[ \begin{array}{l} \frac{a^{5} \div a^{3}}{a^{5}}=\frac{a^{5}-3}{4^{5}}=\frac{a^{2}}{a^{5}} \\ =a \end{array} \] \( \square \) c. \( \left(x^{5}\right)^{3} \div x^{2}= \) d. \( \frac{b^{8}}{b^{2}} \times b^{3}= \) \( \square \) \( \square \) e. \( \frac{\left(e^{6}\right)^{2}}{e^{4}} \times e= \) f. \( \frac{h^{7} \div h^{3}}{\left(h^{2}\right)^{2}}= \)

Ask by Pearson Powell. in South Africa
Feb 20,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

a. \( \frac{1}{a^{3}} \) b. \( f^{10} \) c. \( x^{13} \) d. \( b^{9} \) e. \( e^{9} \) f. \( 1 \)

Solution

Simplify the expression by following steps: - step0: Solution: \(\frac{\left(x^{5}\right)^{3}}{x^{2}}\) - step1: Multiply the exponents: \(\frac{x^{5\times 3}}{x^{2}}\) - step2: Multiply the numbers: \(\frac{x^{15}}{x^{2}}\) - step3: Reduce the fraction: \(\frac{x^{15-2}}{1}\) - step4: Simplify: \(x^{15-2}\) - step5: Divide the terms: \(x^{13}\) Calculate or simplify the expression \( (a^5 / a^3) / a^5 \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(\frac{a^{5}}{a^{3}}\right)}{a^{5}}\) - step1: Remove the parentheses: \(\frac{\frac{a^{5}}{a^{3}}}{a^{5}}\) - step2: Divide the terms: \(\frac{a^{2}}{a^{5}}\) - step3: Reduce the fraction: \(\frac{1}{a^{5-2}}\) - step4: Reduce the fraction: \(\frac{1}{a^{3}}\) Calculate or simplify the expression \( (h^7 / h^3) / (h^2)^2 \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(\frac{h^{7}}{h^{3}}\right)}{\left(h^{2}\right)^{2}}\) - step1: Remove the parentheses: \(\frac{\frac{h^{7}}{h^{3}}}{\left(h^{2}\right)^{2}}\) - step2: Multiply the exponents: \(\frac{\frac{h^{7}}{h^{3}}}{h^{2\times 2}}\) - step3: Multiply the numbers: \(\frac{\frac{h^{7}}{h^{3}}}{h^{4}}\) - step4: Divide the terms: \(\frac{h^{4}}{h^{4}}\) - step5: Divide the terms: \(1\) Calculate or simplify the expression \( (f^9)^2 / f^8 \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(f^{9}\right)^{2}}{f^{8}}\) - step1: Multiply the exponents: \(\frac{f^{9\times 2}}{f^{8}}\) - step2: Multiply the numbers: \(\frac{f^{18}}{f^{8}}\) - step3: Reduce the fraction: \(\frac{f^{18-8}}{1}\) - step4: Simplify: \(f^{18-8}\) - step5: Divide the terms: \(f^{10}\) Calculate or simplify the expression \( b^8 / b^2 * b^3 \). Simplify the expression by following steps: - step0: Solution: \(\frac{b^{8}}{b^{2}}\times b^{3}\) - step1: Divide the terms: \(b^{6}\times b^{3}\) - step2: Simplify the expression: \(b^{6+3}\) - step3: Add the numbers: \(b^{9}\) Calculate or simplify the expression \( (e^6)^2 / e^4 * e \). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(e^{6}\right)^{2}}{e^{4}}\times e\) - step1: Multiply the exponents: \(\frac{e^{6\times 2}}{e^{4}}\times e\) - step2: Multiply by \(a^{-n}:\) \(e^{6\times 2}\times e^{-4}\times e\) - step3: Multiply the numbers: \(e^{12}\times e^{-4}\times e\) - step4: Multiply the terms: \(e^{12-4+1}\) - step5: Calculate: \(e^{9}\) Let's simplify each expression step by step using the laws of exponents. ### a. \[ \frac{a^{5} \div a^{3}}{a^{5}} \] Using the law of exponents \( \frac{a^m}{a^n} = a^{m-n} \): \[ = \frac{a^{5-3}}{a^{5}} = \frac{a^{2}}{a^{5}} = a^{2-5} = a^{-3} = \frac{1}{a^{3}} \] ### b. \[ \frac{\left(f^{9}\right)^{2}}{f^{8}} \] Using the power of a power law \( (a^m)^n = a^{m \cdot n} \): \[ = \frac{f^{9 \cdot 2}}{f^{8}} = \frac{f^{18}}{f^{8}} = f^{18-8} = f^{10} \] ### c. \[ \left(x^{5}\right)^{3} \div x^{2} \] Using the power of a power law and the division law: \[ = \frac{x^{5 \cdot 3}}{x^{2}} = \frac{x^{15}}{x^{2}} = x^{15-2} = x^{13} \] ### d. \[ \frac{b^{8}}{b^{2}} \times b^{3} \] Using the division law and then multiplication: \[ = b^{8-2} \times b^{3} = b^{6} \times b^{3} = b^{6+3} = b^{9} \] ### e. \[ \frac{\left(e^{6}\right)^{2}}{e^{4}} \times e \] Using the power of a power law and then the division law: \[ = \frac{e^{6 \cdot 2}}{e^{4}} \times e = \frac{e^{12}}{e^{4}} \times e = e^{12-4} \times e = e^{8} \times e = e^{8+1} = e^{9} \] ### f. \[ \frac{h^{7} \div h^{3}}{\left(h^{2}\right)^{2}} \] Using the division law and the power of a power law: \[ = \frac{h^{7-3}}{h^{2 \cdot 2}} = \frac{h^{4}}{h^{4}} = h^{4-4} = h^{0} = 1 \] ### Summary of Results: - a. \( \frac{1}{a^{3}} \) - b. \( f^{10} \) - c. \( x^{13} \) - d. \( b^{9} \) - e. \( e^{9} \) - f. \( 1 \)

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

When simplifying expressions using the laws of exponents, it’s essential to remember a few key rules: for division, you subtract the exponents, and for raising a power to a power, you multiply the exponents. For example, \(a^m \div a^n\) becomes \(a^{m-n}\) and \((a^m)^n\) simplifies to \(a^{m \cdot n}\). Don't forget that anything raised to the power of zero equals one! This might pop up when you end up with subtraction resulting in zero exponents, so keep your eyes peeled! For instance, if you simplify something down to \(a^{0}\), you already know the answer is 1. Happy simplifying!

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy