Question
upstudy study bank question image url

Simplify the following: (1) \( \frac{2 x}{3}+\frac{1}{6} \) (2) \( \frac{7}{6 x}-\frac{2}{9 x y}+\frac{1}{3 x^{3}} \) (4) \( 1+a-\frac{2 a-1}{2} \) (5) \( \frac{5}{6 x y}-\frac{x+2}{2 x} \) (7) \( \frac{2}{x}+\frac{5}{x+1} \) (8) \( \frac{x+2}{x^{2}+2}-\frac{6}{x+2} \) (10) \( \frac{4}{(2 x+1)^{2}}-\frac{x+1}{2 x+1} \) (11) \( \frac{2}{2 x y}+\frac{7 x+1}{4 x^{2} y}-\frac{5 x y}{4}+1 \) (12) \( \frac{x-3}{3}-\frac{x-2}{2}+\frac{x+1}{6} \) (13) \( x-\frac{2 x}{3 x-2} \)

Ask by Ortega Cross. in South Africa
Feb 20,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

1. \( \frac{2x}{3} + \frac{1}{6} = \frac{4x + 1}{6} \) 2. \( \frac{7}{6x} - \frac{2}{9xy} + \frac{1}{3x^{3}} = \frac{21yx^{2} - 4x^{2} + 6y}{18yx^{3}} \) 3. \( 1 + a - \frac{2a - 1}{2} = \frac{3}{2} \) 4. \( \frac{5}{6xy} - \frac{x + 2}{2x} = \frac{5 - 3xy - 6y}{6xy} \) 5. \( \frac{2}{x} + \frac{5}{x + 1} = \frac{7x + 2}{x^{2} + x} \) 6. \( \frac{x + 2}{x^{2} + 2} - \frac{6}{x + 2} = \frac{-5x^{2} + 4x - 8}{x^{3} + 2x^{2} + 2x + 4} \) 7. \( \frac{4}{(2x + 1)^{2}} - \frac{x + 1}{2x + 1} = \frac{3 - 2x^{2} - 3x}{4x^{2} + 4x + 1} \) 8. \( \frac{2}{2xy} + \frac{7x + 1}{4x^{2}y} - \frac{5xy}{4} + 1 = \frac{11x + 1 - 5x^{3}y^{2} + 4x^{2}y}{4yx^{2}} \) 9. \( \frac{x - 3}{3} - \frac{x - 2}{2} + \frac{x + 1}{6} = \frac{1}{6} \) 10. \( x - \frac{2x}{3x - 2} = \frac{3x^{2} - 4x}{3x - 2} \)

Solution

Simplify the expression by following steps: - step0: Solution: \(\frac{2}{x}+\frac{5}{\left(x+1\right)}\) - step1: Remove the parentheses: \(\frac{2}{x}+\frac{5}{x+1}\) - step2: Reduce fractions to a common denominator: \(\frac{2\left(x+1\right)}{x\left(x+1\right)}+\frac{5x}{\left(x+1\right)x}\) - step3: Rewrite the expression: \(\frac{2\left(x+1\right)}{x\left(x+1\right)}+\frac{5x}{x\left(x+1\right)}\) - step4: Transform the expression: \(\frac{2\left(x+1\right)+5x}{x\left(x+1\right)}\) - step5: Multiply the terms: \(\frac{2x+2+5x}{x\left(x+1\right)}\) - step6: Add the terms: \(\frac{7x+2}{x\left(x+1\right)}\) - step7: Multiply the terms: \(\frac{7x+2}{x^{2}+x}\) Calculate or simplify the expression \( x - (2*x)/(3*x - 2) \). Simplify the expression by following steps: - step0: Solution: \(x-\frac{2x}{\left(3x-2\right)}\) - step1: Remove the parentheses: \(x-\frac{2x}{3x-2}\) - step2: Reduce fractions to a common denominator: \(\frac{x\left(3x-2\right)}{3x-2}-\frac{2x}{3x-2}\) - step3: Transform the expression: \(\frac{x\left(3x-2\right)-2x}{3x-2}\) - step4: Multiply the terms: \(\frac{3x^{2}-2x-2x}{3x-2}\) - step5: Subtract the terms: \(\frac{3x^{2}-4x}{3x-2}\) Calculate or simplify the expression \( 4/((2*x + 1)^2) - (x + 1)/(2*x + 1) \). Simplify the expression by following steps: - step0: Solution: \(\frac{4}{\left(2x+1\right)^{2}}-\frac{\left(x+1\right)}{\left(2x+1\right)}\) - step1: Remove the parentheses: \(\frac{4}{\left(2x+1\right)^{2}}-\frac{x+1}{2x+1}\) - step2: Reduce fractions to a common denominator: \(\frac{4}{\left(2x+1\right)^{2}}-\frac{\left(x+1\right)\left(2x+1\right)}{\left(2x+1\right)\left(2x+1\right)}\) - step3: Multiply: \(\frac{4}{\left(2x+1\right)^{2}}-\frac{\left(x+1\right)\left(2x+1\right)}{\left(2x+1\right)^{2}}\) - step4: Transform the expression: \(\frac{4-\left(x+1\right)\left(2x+1\right)}{\left(2x+1\right)^{2}}\) - step5: Multiply the terms: \(\frac{4-\left(2x^{2}+3x+1\right)}{\left(2x+1\right)^{2}}\) - step6: Subtract the terms: \(\frac{3-2x^{2}-3x}{\left(2x+1\right)^{2}}\) - step7: Calculate: \(\frac{3-2x^{2}-3x}{4x^{2}+4x+1}\) Calculate or simplify the expression \( (x + 2)/(x^2 + 2) - 6/(x + 2) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(x+2\right)}{\left(x^{2}+2\right)}-\frac{6}{\left(x+2\right)}\) - step1: Remove the parentheses: \(\frac{x+2}{x^{2}+2}-\frac{6}{x+2}\) - step2: Reduce fractions to a common denominator: \(\frac{\left(x+2\right)\left(x+2\right)}{\left(x^{2}+2\right)\left(x+2\right)}-\frac{6\left(x^{2}+2\right)}{\left(x+2\right)\left(x^{2}+2\right)}\) - step3: Rewrite the expression: \(\frac{\left(x+2\right)\left(x+2\right)}{\left(x^{2}+2\right)\left(x+2\right)}-\frac{6\left(x^{2}+2\right)}{\left(x^{2}+2\right)\left(x+2\right)}\) - step4: Transform the expression: \(\frac{\left(x+2\right)\left(x+2\right)-6\left(x^{2}+2\right)}{\left(x^{2}+2\right)\left(x+2\right)}\) - step5: Multiply the terms: \(\frac{x^{2}+4x+4-6\left(x^{2}+2\right)}{\left(x^{2}+2\right)\left(x+2\right)}\) - step6: Multiply the terms: \(\frac{x^{2}+4x+4-\left(6x^{2}+12\right)}{\left(x^{2}+2\right)\left(x+2\right)}\) - step7: Calculate: \(\frac{-5x^{2}+4x-8}{\left(x^{2}+2\right)\left(x+2\right)}\) - step8: Multiply the terms: \(\frac{-5x^{2}+4x-8}{x^{3}+2x^{2}+2x+4}\) Calculate or simplify the expression \( 2/(2*x*y) + (7*x + 1)/(4*x^2*y) - (5*x*y)/4 + 1 \). Simplify the expression by following steps: - step0: Solution: \(\frac{2}{2xy}+\frac{\left(7x+1\right)}{4x^{2}y}-\frac{5xy}{4}+1\) - step1: Remove the parentheses: \(\frac{2}{2xy}+\frac{7x+1}{4x^{2}y}-\frac{5xy}{4}+1\) - step2: Calculate: \(\frac{1}{xy}+\frac{7x+1}{4x^{2}y}-\frac{5xy}{4}+1\) - step3: Reduce fractions to a common denominator: \(\frac{4x}{xy\times 4x}+\frac{7x+1}{4x^{2}y}-\frac{5xyx\times xy}{4x\times xy}+\frac{4x\times xy}{4x\times xy}\) - step4: Reorder the terms: \(\frac{4x}{4xyx}+\frac{7x+1}{4x^{2}y}-\frac{5xyx\times xy}{4x\times xy}+\frac{4x\times xy}{4x\times xy}\) - step5: Multiply the terms: \(\frac{4x}{4x^{2}y}+\frac{7x+1}{4x^{2}y}-\frac{5xyx\times xy}{4x\times xy}+\frac{4x\times xy}{4x\times xy}\) - step6: Multiply the terms: \(\frac{4x}{4x^{2}y}+\frac{7x+1}{4x^{2}y}-\frac{5xyx\times xy}{4x^{2}y}+\frac{4x\times xy}{4x\times xy}\) - step7: Multiply the terms: \(\frac{4x}{4x^{2}y}+\frac{7x+1}{4x^{2}y}-\frac{5xyx\times xy}{4x^{2}y}+\frac{4x\times xy}{4x^{2}y}\) - step8: Transform the expression: \(\frac{4x+7x+1-5xyx\times xy+4x\times xy}{4x^{2}y}\) - step9: Multiply the terms: \(\frac{4x+7x+1-5x^{3}y^{2}+4x\times xy}{4x^{2}y}\) - step10: Multiply the terms: \(\frac{4x+7x+1-5x^{3}y^{2}+4x^{2}y}{4x^{2}y}\) - step11: Add the terms: \(\frac{11x+1-5x^{3}y^{2}+4x^{2}y}{4x^{2}y}\) - step12: Simplify: \(\frac{11x+1-5x^{3}y^{2}+4x^{2}y}{4yx^{2}}\) Calculate or simplify the expression \( (2*x)/3 + 1/6 \). Simplify the expression by following steps: - step0: Solution: \(\frac{2x}{3}+\frac{1}{6}\) - step1: Reduce fractions to a common denominator: \(\frac{2x\times 2}{3\times 2}+\frac{1}{6}\) - step2: Multiply the numbers: \(\frac{2x\times 2}{6}+\frac{1}{6}\) - step3: Transform the expression: \(\frac{2x\times 2+1}{6}\) - step4: Multiply the terms: \(\frac{4x+1}{6}\) Calculate or simplify the expression \( 7/(6*x) - 2/(9*x*y) + 1/(3*x^3) \). Simplify the expression by following steps: - step0: Solution: \(\frac{7}{6x}-\frac{2}{9xy}+\frac{1}{3x^{3}}\) - step1: Reduce fractions to a common denominator: \(\frac{7\times 3yx^{2}}{6x\times 3yx^{2}}-\frac{2\times 2x^{2}}{9xy\times 2x^{2}}+\frac{2\times 3y}{3x^{3}\times 2\times 3y}\) - step2: Multiply the numbers: \(\frac{7\times 3yx^{2}}{18xyx^{2}}-\frac{2\times 2x^{2}}{9xy\times 2x^{2}}+\frac{2\times 3y}{3x^{3}\times 2\times 3y}\) - step3: Multiply the numbers: \(\frac{7\times 3yx^{2}}{18xyx^{2}}-\frac{2\times 2x^{2}}{18xyx^{2}}+\frac{2\times 3y}{3x^{3}\times 2\times 3y}\) - step4: Multiply the terms: \(\frac{7\times 3yx^{2}}{18xyx^{2}}-\frac{2\times 2x^{2}}{18xyx^{2}}+\frac{2\times 3y}{18x^{3}y}\) - step5: Multiply: \(\frac{7\times 3yx^{2}}{18x^{3}y}-\frac{2\times 2x^{2}}{18xyx^{2}}+\frac{2\times 3y}{18x^{3}y}\) - step6: Multiply: \(\frac{7\times 3yx^{2}}{18x^{3}y}-\frac{2\times 2x^{2}}{18x^{3}y}+\frac{2\times 3y}{18x^{3}y}\) - step7: Transform the expression: \(\frac{7\times 3yx^{2}-2\times 2x^{2}+2\times 3y}{18x^{3}y}\) - step8: Multiply the terms: \(\frac{21yx^{2}-2\times 2x^{2}+2\times 3y}{18x^{3}y}\) - step9: Multiply the terms: \(\frac{21yx^{2}-4x^{2}+2\times 3y}{18x^{3}y}\) - step10: Multiply the terms: \(\frac{21yx^{2}-4x^{2}+6y}{18x^{3}y}\) - step11: Simplify: \(\frac{21yx^{2}-4x^{2}+6y}{18yx^{3}}\) Calculate or simplify the expression \( (x - 3)/3 - (x - 2)/2 + (x + 1)/6 \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(x-3\right)}{3}-\frac{\left(x-2\right)}{2}+\frac{\left(x+1\right)}{6}\) - step1: Remove the parentheses: \(\frac{x-3}{3}-\frac{x-2}{2}+\frac{x+1}{6}\) - step2: Reduce fractions to a common denominator: \(\frac{\left(x-3\right)\times 2}{3\times 2}-\frac{\left(x-2\right)\times 3}{2\times 3}+\frac{x+1}{6}\) - step3: Multiply the numbers: \(\frac{\left(x-3\right)\times 2}{6}-\frac{\left(x-2\right)\times 3}{2\times 3}+\frac{x+1}{6}\) - step4: Multiply the numbers: \(\frac{\left(x-3\right)\times 2}{6}-\frac{\left(x-2\right)\times 3}{6}+\frac{x+1}{6}\) - step5: Transform the expression: \(\frac{\left(x-3\right)\times 2-\left(x-2\right)\times 3+x+1}{6}\) - step6: Multiply the terms: \(\frac{2x-6-\left(x-2\right)\times 3+x+1}{6}\) - step7: Multiply the terms: \(\frac{2x-6-\left(3x-6\right)+x+1}{6}\) - step8: Calculate: \(\frac{1}{6}\) Calculate or simplify the expression \( 1 + a - (2*a - 1)/2 \). Simplify the expression by following steps: - step0: Solution: \(1+a-\frac{\left(2a-1\right)}{2}\) - step1: Remove the parentheses: \(1+a-\frac{2a-1}{2}\) - step2: Reduce fractions to a common denominator: \(\frac{2}{2}+\frac{a\times 2}{2}-\frac{2a-1}{2}\) - step3: Transform the expression: \(\frac{2+a\times 2-\left(2a-1\right)}{2}\) - step4: Reorder the terms: \(\frac{2+2a-\left(2a-1\right)}{2}\) - step5: Calculate: \(\frac{3}{2}\) Calculate or simplify the expression \( 5/(6*x*y) - (x + 2)/(2*x) \). Simplify the expression by following steps: - step0: Solution: \(\frac{5}{6xy}-\frac{\left(x+2\right)}{2x}\) - step1: Remove the parentheses: \(\frac{5}{6xy}-\frac{x+2}{2x}\) - step2: Reduce fractions to a common denominator: \(\frac{5}{6xy}-\frac{\left(x+2\right)\times 3y}{2x\times 3y}\) - step3: Multiply the numbers: \(\frac{5}{6xy}-\frac{\left(x+2\right)\times 3y}{6xy}\) - step4: Transform the expression: \(\frac{5-\left(x+2\right)\times 3y}{6xy}\) - step5: Multiply the terms: \(\frac{5-\left(3xy+6y\right)}{6xy}\) - step6: Remove the parentheses: \(\frac{5-3xy-6y}{6xy}\) Here are the simplified results for each expression: 1. **Expression:** \( \frac{2 x}{3}+\frac{1}{6} \) **Simplified Result:** \( \frac{4x+1}{6} \) 2. **Expression:** \( \frac{7}{6 x}-\frac{2}{9 x y}+\frac{1}{3 x^{3}} \) **Simplified Result:** \( \frac{21yx^{2}-4x^{2}+6y}{18yx^{3}} \) 3. **Expression:** \( 1+a-\frac{2 a-1}{2} \) **Simplified Result:** \( \frac{3}{2} \) (or \( 1.5 \)) 4. **Expression:** \( \frac{5}{6 x y}-\frac{x+2}{2 x} \) **Simplified Result:** \( \frac{5-3xy-6y}{6xy} \) 5. **Expression:** \( \frac{2}{x}+\frac{5}{x+1} \) **Simplified Result:** \( \frac{7x+2}{x^{2}+x} \) 6. **Expression:** \( \frac{x+2}{x^{2}+2}-\frac{6}{x+2} \) **Simplified Result:** \( \frac{-5x^{2}+4x-8}{x^{3}+2x^{2}+2x+4} \) 7. **Expression:** \( \frac{4}{(2 x+1)^{2}}-\frac{x+1}{2 x+1} \) **Simplified Result:** \( \frac{3-2x^{2}-3x}{4x^{2}+4x+1} \) 8. **Expression:** \( \frac{2}{2 x y}+\frac{7 x+1}{4 x^{2} y}-\frac{5 x y}{4}+1 \) **Simplified Result:** \( \frac{11x+1-5x^{3}y^{2}+4x^{2}y}{4yx^{2}} \) 9. **Expression:** \( \frac{x-3}{3}-\frac{x-2}{2}+\frac{x+1}{6} \) **Simplified Result:** \( \frac{1}{6} \) (or \( 0.1\dot{6} \)) 10. **Expression:** \( x-\frac{2 x}{3 x-2} \) **Simplified Result:** \( \frac{3x^{2}-4x}{3x-2} \) If you need further assistance or explanations for any of these results, feel free to ask!

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

Sure! Let's simplify each of the given expressions one by one. (1) \( \frac{2 x}{3}+\frac{1}{6} \) To combine these fractions, find a common denominator, which is 6. Thus: \[ \frac{2 x}{3} = \frac{4 x}{6} \] So, \( \frac{4 x}{6} + \frac{1}{6} = \frac{4 x + 1}{6} \). (2) \( \frac{7}{6 x}-\frac{2}{9 x y}+\frac{1}{3 x^{3}} \) The common denominator is \( 18 x^{3} y \). Rewriting each term gives: \[ \frac{21 y}{18 x^{3} y} - \frac{4 x^{2}}{18 x^{3} y} + \frac{6}{18 x^{3} y} = \frac{21y - 4x^2 + 6}{18x^{3} y} \]. (4) \( 1+a-\frac{2 a-1}{2} \) First, rewrite it: \( 1 + a - \left( a - \frac{1}{2} \right) \). This simplifies to: \[ 1 + \frac{1}{2} = \frac{3}{2} + a - a = \frac{3}{2} \]. (5) \( \frac{5}{6 x y}-\frac{x+2}{2 x} \) Finding a common denominator of \( 6xy \): \[ \frac{5}{6xy} - \frac{3(x+2)}{6xy} = \frac{5 - 3(x + 2)}{6xy} = \frac{5 - 3x - 6}{6xy} = \frac{-3x - 1}{6xy} \]. (7) \( \frac{2}{x}+\frac{5}{x+1} \) The common denominator is \( x(x+1) \): Rewriting gives: \[ \frac{2(x + 1) + 5x}{x(x + 1)} = \frac{2x + 2 + 5x}{x(x + 1)} = \frac{7x + 2}{x(x + 1)} \]. (8) \( \frac{x+2}{x^{2}+2}-\frac{6}{x+2} \) Simplifying requires a common denominator of \( (x^2 + 2)(x + 2) \): Rewrite: \[ \frac{(x + 2)^2 - 6(x^2 + 2)}{(x^2 + 2)(x + 2)} = \frac{x^2 + 4x + 4 - 6x^2 - 12}{(x^2 + 2)(x + 2)} = \frac{-5x^2 + 4x - 8}{(x^2 + 2)(x + 2)} \]. (10) \( \frac{4}{(2 x+1)^{2}}-\frac{x+1}{2 x+1} \) Finding a common denominator gives: \[ \frac{4 - (x + 1)(2x + 1)}{(2x + 1)^{2}} = \frac{4 - (2x^2 + 3x + 1)}{(2x + 1)^{2}} = \frac{-2x^2 - 3x + 3}{(2x + 1)^{2}} \]. (11) \( \frac{2}{2 x y}+\frac{7 x+1}{4 x^{2} y}-\frac{5 x y}{4}+1 \) The common denominator is \( 4xy \): Rewriting yields: \[ \frac{4 + 7x + 1 - 5x^2}{4xy} + 1 = \frac{-5x^{2}+7x+5}{4xy} + 1 \]. (12) \( \frac{x-3}{3}-\frac{x-2}{2}+\frac{x+1}{6} \) Using a common denominator of 6 results in: \[ \frac{2(x-3) - 3(x-2) + (x+1)}{6} = \frac{2x - 6 - 3x + 6 + x +

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy