Answer
1. \( \frac{2x}{3} + \frac{1}{6} = \frac{4x + 1}{6} \)
2. \( \frac{7}{6x} - \frac{2}{9xy} + \frac{1}{3x^{3}} = \frac{21yx^{2} - 4x^{2} + 6y}{18yx^{3}} \)
3. \( 1 + a - \frac{2a - 1}{2} = \frac{3}{2} \)
4. \( \frac{5}{6xy} - \frac{x + 2}{2x} = \frac{5 - 3xy - 6y}{6xy} \)
5. \( \frac{2}{x} + \frac{5}{x + 1} = \frac{7x + 2}{x^{2} + x} \)
6. \( \frac{x + 2}{x^{2} + 2} - \frac{6}{x + 2} = \frac{-5x^{2} + 4x - 8}{x^{3} + 2x^{2} + 2x + 4} \)
7. \( \frac{4}{(2x + 1)^{2}} - \frac{x + 1}{2x + 1} = \frac{3 - 2x^{2} - 3x}{4x^{2} + 4x + 1} \)
8. \( \frac{2}{2xy} + \frac{7x + 1}{4x^{2}y} - \frac{5xy}{4} + 1 = \frac{11x + 1 - 5x^{3}y^{2} + 4x^{2}y}{4yx^{2}} \)
9. \( \frac{x - 3}{3} - \frac{x - 2}{2} + \frac{x + 1}{6} = \frac{1}{6} \)
10. \( x - \frac{2x}{3x - 2} = \frac{3x^{2} - 4x}{3x - 2} \)
Solution
Simplify the expression by following steps:
- step0: Solution:
\(\frac{2}{x}+\frac{5}{\left(x+1\right)}\)
- step1: Remove the parentheses:
\(\frac{2}{x}+\frac{5}{x+1}\)
- step2: Reduce fractions to a common denominator:
\(\frac{2\left(x+1\right)}{x\left(x+1\right)}+\frac{5x}{\left(x+1\right)x}\)
- step3: Rewrite the expression:
\(\frac{2\left(x+1\right)}{x\left(x+1\right)}+\frac{5x}{x\left(x+1\right)}\)
- step4: Transform the expression:
\(\frac{2\left(x+1\right)+5x}{x\left(x+1\right)}\)
- step5: Multiply the terms:
\(\frac{2x+2+5x}{x\left(x+1\right)}\)
- step6: Add the terms:
\(\frac{7x+2}{x\left(x+1\right)}\)
- step7: Multiply the terms:
\(\frac{7x+2}{x^{2}+x}\)
Calculate or simplify the expression \( x - (2*x)/(3*x - 2) \).
Simplify the expression by following steps:
- step0: Solution:
\(x-\frac{2x}{\left(3x-2\right)}\)
- step1: Remove the parentheses:
\(x-\frac{2x}{3x-2}\)
- step2: Reduce fractions to a common denominator:
\(\frac{x\left(3x-2\right)}{3x-2}-\frac{2x}{3x-2}\)
- step3: Transform the expression:
\(\frac{x\left(3x-2\right)-2x}{3x-2}\)
- step4: Multiply the terms:
\(\frac{3x^{2}-2x-2x}{3x-2}\)
- step5: Subtract the terms:
\(\frac{3x^{2}-4x}{3x-2}\)
Calculate or simplify the expression \( 4/((2*x + 1)^2) - (x + 1)/(2*x + 1) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{4}{\left(2x+1\right)^{2}}-\frac{\left(x+1\right)}{\left(2x+1\right)}\)
- step1: Remove the parentheses:
\(\frac{4}{\left(2x+1\right)^{2}}-\frac{x+1}{2x+1}\)
- step2: Reduce fractions to a common denominator:
\(\frac{4}{\left(2x+1\right)^{2}}-\frac{\left(x+1\right)\left(2x+1\right)}{\left(2x+1\right)\left(2x+1\right)}\)
- step3: Multiply:
\(\frac{4}{\left(2x+1\right)^{2}}-\frac{\left(x+1\right)\left(2x+1\right)}{\left(2x+1\right)^{2}}\)
- step4: Transform the expression:
\(\frac{4-\left(x+1\right)\left(2x+1\right)}{\left(2x+1\right)^{2}}\)
- step5: Multiply the terms:
\(\frac{4-\left(2x^{2}+3x+1\right)}{\left(2x+1\right)^{2}}\)
- step6: Subtract the terms:
\(\frac{3-2x^{2}-3x}{\left(2x+1\right)^{2}}\)
- step7: Calculate:
\(\frac{3-2x^{2}-3x}{4x^{2}+4x+1}\)
Calculate or simplify the expression \( (x + 2)/(x^2 + 2) - 6/(x + 2) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(x+2\right)}{\left(x^{2}+2\right)}-\frac{6}{\left(x+2\right)}\)
- step1: Remove the parentheses:
\(\frac{x+2}{x^{2}+2}-\frac{6}{x+2}\)
- step2: Reduce fractions to a common denominator:
\(\frac{\left(x+2\right)\left(x+2\right)}{\left(x^{2}+2\right)\left(x+2\right)}-\frac{6\left(x^{2}+2\right)}{\left(x+2\right)\left(x^{2}+2\right)}\)
- step3: Rewrite the expression:
\(\frac{\left(x+2\right)\left(x+2\right)}{\left(x^{2}+2\right)\left(x+2\right)}-\frac{6\left(x^{2}+2\right)}{\left(x^{2}+2\right)\left(x+2\right)}\)
- step4: Transform the expression:
\(\frac{\left(x+2\right)\left(x+2\right)-6\left(x^{2}+2\right)}{\left(x^{2}+2\right)\left(x+2\right)}\)
- step5: Multiply the terms:
\(\frac{x^{2}+4x+4-6\left(x^{2}+2\right)}{\left(x^{2}+2\right)\left(x+2\right)}\)
- step6: Multiply the terms:
\(\frac{x^{2}+4x+4-\left(6x^{2}+12\right)}{\left(x^{2}+2\right)\left(x+2\right)}\)
- step7: Calculate:
\(\frac{-5x^{2}+4x-8}{\left(x^{2}+2\right)\left(x+2\right)}\)
- step8: Multiply the terms:
\(\frac{-5x^{2}+4x-8}{x^{3}+2x^{2}+2x+4}\)
Calculate or simplify the expression \( 2/(2*x*y) + (7*x + 1)/(4*x^2*y) - (5*x*y)/4 + 1 \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{2}{2xy}+\frac{\left(7x+1\right)}{4x^{2}y}-\frac{5xy}{4}+1\)
- step1: Remove the parentheses:
\(\frac{2}{2xy}+\frac{7x+1}{4x^{2}y}-\frac{5xy}{4}+1\)
- step2: Calculate:
\(\frac{1}{xy}+\frac{7x+1}{4x^{2}y}-\frac{5xy}{4}+1\)
- step3: Reduce fractions to a common denominator:
\(\frac{4x}{xy\times 4x}+\frac{7x+1}{4x^{2}y}-\frac{5xyx\times xy}{4x\times xy}+\frac{4x\times xy}{4x\times xy}\)
- step4: Reorder the terms:
\(\frac{4x}{4xyx}+\frac{7x+1}{4x^{2}y}-\frac{5xyx\times xy}{4x\times xy}+\frac{4x\times xy}{4x\times xy}\)
- step5: Multiply the terms:
\(\frac{4x}{4x^{2}y}+\frac{7x+1}{4x^{2}y}-\frac{5xyx\times xy}{4x\times xy}+\frac{4x\times xy}{4x\times xy}\)
- step6: Multiply the terms:
\(\frac{4x}{4x^{2}y}+\frac{7x+1}{4x^{2}y}-\frac{5xyx\times xy}{4x^{2}y}+\frac{4x\times xy}{4x\times xy}\)
- step7: Multiply the terms:
\(\frac{4x}{4x^{2}y}+\frac{7x+1}{4x^{2}y}-\frac{5xyx\times xy}{4x^{2}y}+\frac{4x\times xy}{4x^{2}y}\)
- step8: Transform the expression:
\(\frac{4x+7x+1-5xyx\times xy+4x\times xy}{4x^{2}y}\)
- step9: Multiply the terms:
\(\frac{4x+7x+1-5x^{3}y^{2}+4x\times xy}{4x^{2}y}\)
- step10: Multiply the terms:
\(\frac{4x+7x+1-5x^{3}y^{2}+4x^{2}y}{4x^{2}y}\)
- step11: Add the terms:
\(\frac{11x+1-5x^{3}y^{2}+4x^{2}y}{4x^{2}y}\)
- step12: Simplify:
\(\frac{11x+1-5x^{3}y^{2}+4x^{2}y}{4yx^{2}}\)
Calculate or simplify the expression \( (2*x)/3 + 1/6 \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{2x}{3}+\frac{1}{6}\)
- step1: Reduce fractions to a common denominator:
\(\frac{2x\times 2}{3\times 2}+\frac{1}{6}\)
- step2: Multiply the numbers:
\(\frac{2x\times 2}{6}+\frac{1}{6}\)
- step3: Transform the expression:
\(\frac{2x\times 2+1}{6}\)
- step4: Multiply the terms:
\(\frac{4x+1}{6}\)
Calculate or simplify the expression \( 7/(6*x) - 2/(9*x*y) + 1/(3*x^3) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{7}{6x}-\frac{2}{9xy}+\frac{1}{3x^{3}}\)
- step1: Reduce fractions to a common denominator:
\(\frac{7\times 3yx^{2}}{6x\times 3yx^{2}}-\frac{2\times 2x^{2}}{9xy\times 2x^{2}}+\frac{2\times 3y}{3x^{3}\times 2\times 3y}\)
- step2: Multiply the numbers:
\(\frac{7\times 3yx^{2}}{18xyx^{2}}-\frac{2\times 2x^{2}}{9xy\times 2x^{2}}+\frac{2\times 3y}{3x^{3}\times 2\times 3y}\)
- step3: Multiply the numbers:
\(\frac{7\times 3yx^{2}}{18xyx^{2}}-\frac{2\times 2x^{2}}{18xyx^{2}}+\frac{2\times 3y}{3x^{3}\times 2\times 3y}\)
- step4: Multiply the terms:
\(\frac{7\times 3yx^{2}}{18xyx^{2}}-\frac{2\times 2x^{2}}{18xyx^{2}}+\frac{2\times 3y}{18x^{3}y}\)
- step5: Multiply:
\(\frac{7\times 3yx^{2}}{18x^{3}y}-\frac{2\times 2x^{2}}{18xyx^{2}}+\frac{2\times 3y}{18x^{3}y}\)
- step6: Multiply:
\(\frac{7\times 3yx^{2}}{18x^{3}y}-\frac{2\times 2x^{2}}{18x^{3}y}+\frac{2\times 3y}{18x^{3}y}\)
- step7: Transform the expression:
\(\frac{7\times 3yx^{2}-2\times 2x^{2}+2\times 3y}{18x^{3}y}\)
- step8: Multiply the terms:
\(\frac{21yx^{2}-2\times 2x^{2}+2\times 3y}{18x^{3}y}\)
- step9: Multiply the terms:
\(\frac{21yx^{2}-4x^{2}+2\times 3y}{18x^{3}y}\)
- step10: Multiply the terms:
\(\frac{21yx^{2}-4x^{2}+6y}{18x^{3}y}\)
- step11: Simplify:
\(\frac{21yx^{2}-4x^{2}+6y}{18yx^{3}}\)
Calculate or simplify the expression \( (x - 3)/3 - (x - 2)/2 + (x + 1)/6 \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(x-3\right)}{3}-\frac{\left(x-2\right)}{2}+\frac{\left(x+1\right)}{6}\)
- step1: Remove the parentheses:
\(\frac{x-3}{3}-\frac{x-2}{2}+\frac{x+1}{6}\)
- step2: Reduce fractions to a common denominator:
\(\frac{\left(x-3\right)\times 2}{3\times 2}-\frac{\left(x-2\right)\times 3}{2\times 3}+\frac{x+1}{6}\)
- step3: Multiply the numbers:
\(\frac{\left(x-3\right)\times 2}{6}-\frac{\left(x-2\right)\times 3}{2\times 3}+\frac{x+1}{6}\)
- step4: Multiply the numbers:
\(\frac{\left(x-3\right)\times 2}{6}-\frac{\left(x-2\right)\times 3}{6}+\frac{x+1}{6}\)
- step5: Transform the expression:
\(\frac{\left(x-3\right)\times 2-\left(x-2\right)\times 3+x+1}{6}\)
- step6: Multiply the terms:
\(\frac{2x-6-\left(x-2\right)\times 3+x+1}{6}\)
- step7: Multiply the terms:
\(\frac{2x-6-\left(3x-6\right)+x+1}{6}\)
- step8: Calculate:
\(\frac{1}{6}\)
Calculate or simplify the expression \( 1 + a - (2*a - 1)/2 \).
Simplify the expression by following steps:
- step0: Solution:
\(1+a-\frac{\left(2a-1\right)}{2}\)
- step1: Remove the parentheses:
\(1+a-\frac{2a-1}{2}\)
- step2: Reduce fractions to a common denominator:
\(\frac{2}{2}+\frac{a\times 2}{2}-\frac{2a-1}{2}\)
- step3: Transform the expression:
\(\frac{2+a\times 2-\left(2a-1\right)}{2}\)
- step4: Reorder the terms:
\(\frac{2+2a-\left(2a-1\right)}{2}\)
- step5: Calculate:
\(\frac{3}{2}\)
Calculate or simplify the expression \( 5/(6*x*y) - (x + 2)/(2*x) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{5}{6xy}-\frac{\left(x+2\right)}{2x}\)
- step1: Remove the parentheses:
\(\frac{5}{6xy}-\frac{x+2}{2x}\)
- step2: Reduce fractions to a common denominator:
\(\frac{5}{6xy}-\frac{\left(x+2\right)\times 3y}{2x\times 3y}\)
- step3: Multiply the numbers:
\(\frac{5}{6xy}-\frac{\left(x+2\right)\times 3y}{6xy}\)
- step4: Transform the expression:
\(\frac{5-\left(x+2\right)\times 3y}{6xy}\)
- step5: Multiply the terms:
\(\frac{5-\left(3xy+6y\right)}{6xy}\)
- step6: Remove the parentheses:
\(\frac{5-3xy-6y}{6xy}\)
Here are the simplified results for each expression:
1. **Expression:** \( \frac{2 x}{3}+\frac{1}{6} \)
**Simplified Result:** \( \frac{4x+1}{6} \)
2. **Expression:** \( \frac{7}{6 x}-\frac{2}{9 x y}+\frac{1}{3 x^{3}} \)
**Simplified Result:** \( \frac{21yx^{2}-4x^{2}+6y}{18yx^{3}} \)
3. **Expression:** \( 1+a-\frac{2 a-1}{2} \)
**Simplified Result:** \( \frac{3}{2} \) (or \( 1.5 \))
4. **Expression:** \( \frac{5}{6 x y}-\frac{x+2}{2 x} \)
**Simplified Result:** \( \frac{5-3xy-6y}{6xy} \)
5. **Expression:** \( \frac{2}{x}+\frac{5}{x+1} \)
**Simplified Result:** \( \frac{7x+2}{x^{2}+x} \)
6. **Expression:** \( \frac{x+2}{x^{2}+2}-\frac{6}{x+2} \)
**Simplified Result:** \( \frac{-5x^{2}+4x-8}{x^{3}+2x^{2}+2x+4} \)
7. **Expression:** \( \frac{4}{(2 x+1)^{2}}-\frac{x+1}{2 x+1} \)
**Simplified Result:** \( \frac{3-2x^{2}-3x}{4x^{2}+4x+1} \)
8. **Expression:** \( \frac{2}{2 x y}+\frac{7 x+1}{4 x^{2} y}-\frac{5 x y}{4}+1 \)
**Simplified Result:** \( \frac{11x+1-5x^{3}y^{2}+4x^{2}y}{4yx^{2}} \)
9. **Expression:** \( \frac{x-3}{3}-\frac{x-2}{2}+\frac{x+1}{6} \)
**Simplified Result:** \( \frac{1}{6} \) (or \( 0.1\dot{6} \))
10. **Expression:** \( x-\frac{2 x}{3 x-2} \)
**Simplified Result:** \( \frac{3x^{2}-4x}{3x-2} \)
If you need further assistance or explanations for any of these results, feel free to ask!
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution