Question
upstudy study bank question image url

\( \$ 2,200 \) is invested in an account with a \( 2.5 \% \) interest rate that is compounded quarterly. How much money is in the account at the end of one year? \[ S[?] \] Round to the nearest cent.

Ask by George Moreno. in the United States
Feb 20,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Al final de un año, habrá \$2255.52 en la cuenta.

Solution

Para calcular el monto total en la cuenta al final de un año con interés compuesto, utilizamos la fórmula: \[ S = P \left(1 + \frac{r}{n}\right)^{nt} \] donde: - \( S \) es el monto total en la cuenta después de \( t \) años. - \( P \) es el capital inicial (inversión inicial). - \( r \) es la tasa de interés anual (en forma decimal). - \( n \) es el número de veces que se compone el interés por año. - \( t \) es el número de años. Dado: - \( P = 2200 \) - \( r = 0.025 \) (que es \( 2.5\% \) en forma decimal) - \( n = 4 \) (porque el interés se compone trimestralmente) - \( t = 1 \) Sustituyendo estos valores en la fórmula: \[ S = 2200 \left(1 + \frac{0.025}{4}\right)^{4 \cdot 1} \] Ahora, vamos a calcularlo paso a paso. Primero, calculamos \( \frac{0.025}{4} \) y luego \( 1 + \frac{0.025}{4} \). Después, elevamos ese resultado a la potencia de \( 4 \) y finalmente multiplicamos por \( 2200 \). Voy a realizar estos cálculos. Calculate the value by following steps: - step0: Calculate: \(\frac{0.025}{4}\) - step1: Convert the expressions: \(\frac{\frac{1}{40}}{4}\) - step2: Multiply by the reciprocal: \(\frac{1}{40}\times \frac{1}{4}\) - step3: Multiply the fractions: \(\frac{1}{40\times 4}\) - step4: Multiply: \(\frac{1}{160}\) Calculate or simplify the expression \( 1 + 0.025/4 \). Calculate the value by following steps: - step0: Calculate: \(1+\frac{0.025}{4}\) - step1: Divide the terms: \(1+\frac{1}{160}\) - step2: Reduce fractions to a common denominator: \(\frac{160}{160}+\frac{1}{160}\) - step3: Transform the expression: \(\frac{160+1}{160}\) - step4: Add the numbers: \(\frac{161}{160}\) Calculate or simplify the expression \( (1.00625)^4 \). Calculate the value by following steps: - step0: Calculate: \(1.00625^{4}\) - step1: Convert the expressions: \(\left(\frac{161}{160}\right)^{4}\) - step2: Use the properties of exponents: \(\frac{161^{4}}{160^{4}}\) Calculate or simplify the expression \( 2200 * 1.025235 \). Calculate the value by following steps: - step0: Calculate: \(2200\times 1.025235\) - step1: Multiply the numbers: \(2255.517\) Ahora hemos realizado todos los cálculos necesarios: 1. Calculamos \( \frac{0.025}{4} \) y obtuvimos \( 0.00625 \). 2. Luego, sumamos \( 1 + 0.00625 \) y obtuvimos \( 1.00625 \). 3. Elevamos \( 1.00625 \) a la potencia de \( 4 \) y obtuvimos aproximadamente \( 1.025235 \). 4. Finalmente, multiplicamos \( 2200 \) por \( 1.025235 \) y obtuvimos aproximadamente \( 2255.517 \). Redondeando a los centavos, el monto total en la cuenta al final de un año es: \[ S \approx 2255.52 \] Por lo tanto, al final de un año, habrá aproximadamente **\$2255.52** en la cuenta.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

To find the total amount in the account at the end of one year with interest compounded quarterly, we can use the formula: \[ S = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( S \) is the amount in the account after time \( t \). - \( P \) is the principal amount (initial investment) = \( \$2,200 \). - \( r \) is the annual interest rate (decimal) = \( 0.025 \). - \( n \) is the number of times interest is compounded per year = \( 4 \) (quarterly). - \( t \) is the time in years = \( 1 \). Plugging the values into the formula, we get: \[ S = 2200 \left(1 + \frac{0.025}{4}\right)^{4 \times 1} \] Calculating this step-by-step: 1. Calculate \( \frac{0.025}{4} = 0.00625 \). 2. Add this to 1: \( 1 + 0.00625 = 1.00625 \). 3. Raise to the power of \( 4 \): \( 1.00625^4 \approx 1.025396 \). 4. Multiply by \( 2200 \): \( S \approx 2200 \times 1.025396 \approx 2255.87 \). So, the amount in the account at the end of one year is approximately \( \$2,255.87 \).

Latest Arithmetic Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy