19. \( \int_{3}^{3}\left(x^{2}+2 x-4\right) d x=\left[\frac{1}{3} x^{3}+x^{2}-4 x\right]_{1}^{3}=(9+9-12)-\left(\frac{1}{3}+1-4\right)=6+\frac{4}{3}=\frac{29}{3} \) 21. \( \int_{0}^{2}\left(\frac{4}{5} t^{3}-\frac{4}{4} t^{2}+\frac{2}{5} t\right) d t=\left[\frac{1}{3} t^{4}-\frac{1}{4} t^{3}+\frac{4}{8} t^{2}\right]_{0}^{2}=\left(\frac{4}{5}-2+\frac{4}{5}\right)-0=2 \) 23. \( \int_{1}^{3} \sqrt{x} d x=\int_{1}^{9} x^{1 / 2} d x=\left[\frac{x^{3 / 2}}{3 / 2}\right]_{1}^{3}=\frac{4}{4}\left[x^{3 / 2}\right]_{1}^{0}=\frac{4}{4}\left(9^{3 / 2}-1^{3 / 2}\right)=\frac{3}{3}(27-1)=\frac{24}{3} \) 25. \( \int_{\pi / 6}^{\pi} \sin \theta d \theta=[-\cos \theta]_{\pi / 6}^{\pi}=-\cos \pi-\left(-\cos \frac{\pi}{6}\right)=-(-1)-(-\sqrt{3} / 2)=1+\sqrt{3} / 2 \) 27. \( \int_{0}^{1}(u+2)(u-3) d u=\int_{0}^{1}\left(u^{2}-u-6\right) d u=\left[\frac{1}{3} u^{3}-\frac{1}{2} u^{2}-6 u\right]_{0}^{1}=\left(\frac{1}{3}-\frac{1}{2}-6\right)-0=-\frac{37}{6} \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Beyond the Answer
Have you ever thought about how integrals can represent areas? When you compute definite integrals, you’re really finding the area under a curve between two points on the x-axis! For example, the integral of \( x^2 + 2x - 4 \) from 3 to 3 is zero—because there’s no area when the limits are the same. In the realm of physics, integrals are everywhere! They're used to calculate quantities like distance, volume, and even work done. For instance, using integrals, you can find the work done by a variable force or determine the area under velocity-time graphs, showcasing how integral calculus isn't just academic, but a vital tool in understanding the real world.