Question
upstudy study bank question image url

9) \( \frac{5}{x^{2}-x-6}+\frac{3 x}{3-x}+\frac{4}{2+x} \)

Ask by Grant Lynch. in South Africa
Feb 19,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The simplified expression is \( -\frac{3x^2 + 2x + 7}{(x-3)(x+2)} \).

Solution

Simplify the expression by following steps: - step0: Solution: \(\left(\frac{5}{\left(x^{2}-x-6\right)}\right)+\left(\frac{3x}{\left(3-x\right)}\right)+\left(\frac{4}{\left(2+x\right)}\right)\) - step1: Remove the parentheses: \(\left(\frac{5}{x^{2}-x-6}\right)+\left(\frac{3x}{3-x}\right)+\left(\frac{4}{2+x}\right)\) - step2: Remove the parentheses: \(\frac{5}{x^{2}-x-6}+\left(\frac{3x}{3-x}\right)+\left(\frac{4}{2+x}\right)\) - step3: Remove the parentheses: \(\frac{5}{x^{2}-x-6}+\frac{3x}{3-x}+\left(\frac{4}{2+x}\right)\) - step4: Remove the parentheses: \(\frac{5}{x^{2}-x-6}+\frac{3x}{3-x}+\frac{4}{2+x}\) - step5: Rewrite the fractions: \(\frac{5}{x^{2}-x-6}-\frac{3x}{-3+x}+\frac{4}{2+x}\) - step6: Factor the expression: \(\frac{5}{\left(x+2\right)\left(x-3\right)}-\frac{3x}{-3+x}+\frac{4}{2+x}\) - step7: Reduce fractions to a common denominator: \(\frac{5}{\left(x+2\right)\left(x-3\right)}-\frac{3x\left(x+2\right)}{\left(-3+x\right)\left(x+2\right)}+\frac{4\left(x-3\right)}{\left(2+x\right)\left(x-3\right)}\) - step8: Rewrite the expression: \(\frac{5}{\left(x+2\right)\left(x-3\right)}-\frac{3x\left(x+2\right)}{\left(x+2\right)\left(x-3\right)}+\frac{4\left(x-3\right)}{\left(x+2\right)\left(x-3\right)}\) - step9: Transform the expression: \(\frac{5-3x\left(x+2\right)+4\left(x-3\right)}{\left(x+2\right)\left(x-3\right)}\) - step10: Multiply the terms: \(\frac{5-\left(3x^{2}+6x\right)+4\left(x-3\right)}{\left(x+2\right)\left(x-3\right)}\) - step11: Multiply the terms: \(\frac{5-\left(3x^{2}+6x\right)+4x-12}{\left(x+2\right)\left(x-3\right)}\) - step12: Calculate: \(\frac{-7-3x^{2}-2x}{\left(x+2\right)\left(x-3\right)}\) - step13: Rewrite the fraction: \(-\frac{7+3x^{2}+2x}{\left(x+2\right)\left(x-3\right)}\) - step14: Multiply the terms: \(-\frac{7+3x^{2}+2x}{x^{2}-x-6}\) To simplify the expression \[ \frac{5}{x^{2}-x-6}+\frac{3 x}{3-x}+\frac{4}{2+x}, \] we can follow these steps: 1. **Factor the Denominators**: - The first term has a denominator \(x^2 - x - 6\). We can factor this as \((x-3)(x+2)\). - The second term has a denominator \(3 - x\), which can be rewritten as \(-(x - 3)\). - The third term has a denominator \(2 + x\), which can be rewritten as \((x + 2)\). 2. **Rewrite the Expression**: The expression can be rewritten as: \[ \frac{5}{(x-3)(x+2)} - \frac{3x}{(x-3)} + \frac{4}{(x+2)}. \] 3. **Combine the Terms**: To combine these fractions, we need a common denominator, which is \((x-3)(x+2)\). We rewrite each term: - The first term remains \(\frac{5}{(x-3)(x+2)}\). - The second term becomes \(-\frac{3x(x+2)}{(x-3)(x+2)}\). - The third term becomes \(\frac{4(x-3)}{(x-3)(x+2)}\). 4. **Combine the Numerators**: Now we can combine the numerators: \[ \frac{5 - 3x(x+2) + 4(x-3)}{(x-3)(x+2)}. \] 5. **Simplify the Numerator**: Expanding the numerator: - \( -3x(x+2) = -3x^2 - 6x \) - \( 4(x-3) = 4x - 12 \) Combining these gives: \[ 5 - 3x^2 - 6x + 4x - 12 = -3x^2 - 2x - 7. \] 6. **Final Expression**: Thus, the simplified expression is: \[ -\frac{3x^2 + 2x + 7}{(x-3)(x+2)}. \] In conclusion, the simplified form of the original expression is: \[ -\frac{3x^2 + 2x + 7}{(x-3)(x+2)}. \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

To simplify the expression \( \frac{5}{x^{2}-x-6}+\frac{3 x}{3-x}+\frac{4}{2+x} \), we start by factoring the quadratic in the first term. 1. \( x^{2} - x - 6 \) can be factored as \( (x-3)(x+2) \). Therefore, the first term becomes: \[ \frac{5}{(x-3)(x+2)} \] 2. The second term \( \frac{3x}{3-x} \) can be rewritten as \( -\frac{3x}{x-3} \) (flipping the denominator sign). 3. The third term \( \frac{4}{2+x} \) can be rewritten as \( \frac{4}{x+2} \). Now, combining these results gives us: \[ \frac{5}{(x-3)(x+2)} - \frac{3x}{(x-3)} + \frac{4}{(x+2)} \] To add them correctly, we will find a common denominator, which is \( (x-3)(x+2) \): \[ = \frac{5 - 3x(x+2) + 4(x-3)}{(x-3)(x+2)} \] Next, we simplify the numerator: \[ = 5 - 3x^2 - 6x + 4x - 12 \] \[ = -3x^2 - 2x - 7 \] Thus, the entire expression becomes: \[ \frac{-3x^2 - 2x - 7}{(x-3)(x+2)} \] This is the simplified form of the given expression.

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy