Responder
The simplified expression is \( -\frac{3x^2 + 2x + 7}{(x-3)(x+2)} \).
Solución
Simplify the expression by following steps:
- step0: Solution:
\(\left(\frac{5}{\left(x^{2}-x-6\right)}\right)+\left(\frac{3x}{\left(3-x\right)}\right)+\left(\frac{4}{\left(2+x\right)}\right)\)
- step1: Remove the parentheses:
\(\left(\frac{5}{x^{2}-x-6}\right)+\left(\frac{3x}{3-x}\right)+\left(\frac{4}{2+x}\right)\)
- step2: Remove the parentheses:
\(\frac{5}{x^{2}-x-6}+\left(\frac{3x}{3-x}\right)+\left(\frac{4}{2+x}\right)\)
- step3: Remove the parentheses:
\(\frac{5}{x^{2}-x-6}+\frac{3x}{3-x}+\left(\frac{4}{2+x}\right)\)
- step4: Remove the parentheses:
\(\frac{5}{x^{2}-x-6}+\frac{3x}{3-x}+\frac{4}{2+x}\)
- step5: Rewrite the fractions:
\(\frac{5}{x^{2}-x-6}-\frac{3x}{-3+x}+\frac{4}{2+x}\)
- step6: Factor the expression:
\(\frac{5}{\left(x+2\right)\left(x-3\right)}-\frac{3x}{-3+x}+\frac{4}{2+x}\)
- step7: Reduce fractions to a common denominator:
\(\frac{5}{\left(x+2\right)\left(x-3\right)}-\frac{3x\left(x+2\right)}{\left(-3+x\right)\left(x+2\right)}+\frac{4\left(x-3\right)}{\left(2+x\right)\left(x-3\right)}\)
- step8: Rewrite the expression:
\(\frac{5}{\left(x+2\right)\left(x-3\right)}-\frac{3x\left(x+2\right)}{\left(x+2\right)\left(x-3\right)}+\frac{4\left(x-3\right)}{\left(x+2\right)\left(x-3\right)}\)
- step9: Transform the expression:
\(\frac{5-3x\left(x+2\right)+4\left(x-3\right)}{\left(x+2\right)\left(x-3\right)}\)
- step10: Multiply the terms:
\(\frac{5-\left(3x^{2}+6x\right)+4\left(x-3\right)}{\left(x+2\right)\left(x-3\right)}\)
- step11: Multiply the terms:
\(\frac{5-\left(3x^{2}+6x\right)+4x-12}{\left(x+2\right)\left(x-3\right)}\)
- step12: Calculate:
\(\frac{-7-3x^{2}-2x}{\left(x+2\right)\left(x-3\right)}\)
- step13: Rewrite the fraction:
\(-\frac{7+3x^{2}+2x}{\left(x+2\right)\left(x-3\right)}\)
- step14: Multiply the terms:
\(-\frac{7+3x^{2}+2x}{x^{2}-x-6}\)
To simplify the expression
\[
\frac{5}{x^{2}-x-6}+\frac{3 x}{3-x}+\frac{4}{2+x},
\]
we can follow these steps:
1. **Factor the Denominators**:
- The first term has a denominator \(x^2 - x - 6\). We can factor this as \((x-3)(x+2)\).
- The second term has a denominator \(3 - x\), which can be rewritten as \(-(x - 3)\).
- The third term has a denominator \(2 + x\), which can be rewritten as \((x + 2)\).
2. **Rewrite the Expression**:
The expression can be rewritten as:
\[
\frac{5}{(x-3)(x+2)} - \frac{3x}{(x-3)} + \frac{4}{(x+2)}.
\]
3. **Combine the Terms**:
To combine these fractions, we need a common denominator, which is \((x-3)(x+2)\). We rewrite each term:
- The first term remains \(\frac{5}{(x-3)(x+2)}\).
- The second term becomes \(-\frac{3x(x+2)}{(x-3)(x+2)}\).
- The third term becomes \(\frac{4(x-3)}{(x-3)(x+2)}\).
4. **Combine the Numerators**:
Now we can combine the numerators:
\[
\frac{5 - 3x(x+2) + 4(x-3)}{(x-3)(x+2)}.
\]
5. **Simplify the Numerator**:
Expanding the numerator:
- \( -3x(x+2) = -3x^2 - 6x \)
- \( 4(x-3) = 4x - 12 \)
Combining these gives:
\[
5 - 3x^2 - 6x + 4x - 12 = -3x^2 - 2x - 7.
\]
6. **Final Expression**:
Thus, the simplified expression is:
\[
-\frac{3x^2 + 2x + 7}{(x-3)(x+2)}.
\]
In conclusion, the simplified form of the original expression is:
\[
-\frac{3x^2 + 2x + 7}{(x-3)(x+2)}.
\]
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución