Question
upstudy study bank question image url

If \( 2 \sin \theta+7=0 \) and \( 90^{\circ}<\theta<270^{\circ} \), Determine the value of \( 24 \tan \theta+25 \cos \theta \) with the aid of a diagram. If \( \cos 20^{\circ}=p \), express each of the following in terms of \( p \) : \( 5.2 .1 \cos \left(-20^{\circ}\right) \) \( 5.2 .2 \cos 160^{\circ} \)

Ask by Barber Brooks. in South Africa
Feb 18,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Cannot determine \( 24 \tan \theta + 25 \cos \theta \) because \( \sin \theta = -\frac{7}{2} \) is invalid. However, \( 5.2.1 = 5.2p \) and \( 5.2.2 = -5.2p \).

Solution

Let's break down the problem step by step. ### Step 1: Solve the equation \( 2 \sin \theta + 7 = 0 \) First, we can isolate \( \sin \theta \): \[ 2 \sin \theta = -7 \] \[ \sin \theta = -\frac{7}{2} \] However, since the sine function has a range of \([-1, 1]\), there are no valid solutions for \( \sin \theta = -\frac{7}{2} \). Therefore, we need to check if there was a misunderstanding in the problem statement. Assuming the equation should be \( 2 \sin \theta - 7 = 0 \): \[ 2 \sin \theta = 7 \] \[ \sin \theta = \frac{7}{2} \] This is also invalid. Let's assume the equation is correct and proceed with the next part of the problem. ### Step 2: Determine \( 24 \tan \theta + 25 \cos \theta \) Since we cannot find \( \theta \) from the sine equation, we will assume \( \theta \) is in the third quadrant (as given \( 90^{\circ} < \theta < 270^{\circ} \)) and proceed to find \( 24 \tan \theta + 25 \cos \theta \) using the known properties of trigonometric functions. ### Step 3: Express \( 5.2.1 \cos(-20^{\circ}) \) and \( 5.2.2 \cos(160^{\circ}) \) in terms of \( p \) Given \( \cos 20^{\circ} = p \): 1. **For \( 5.2.1 \cos(-20^{\circ}) \)**: \[ \cos(-20^{\circ}) = \cos(20^{\circ}) = p \] Thus, \[ 5.2.1 = 5.2 \cdot 1 \cdot p = 5.2p \] 2. **For \( 5.2.2 \cos(160^{\circ}) \)**: Using the cosine identity: \[ \cos(160^{\circ}) = \cos(180^{\circ} - 20^{\circ}) = -\cos(20^{\circ}) = -p \] Thus, \[ 5.2.2 = 5.2 \cdot (-p) = -5.2p \] ### Final Results 1. Since \( \sin \theta = -\frac{7}{2} \) is invalid, we cannot determine \( 24 \tan \theta + 25 \cos \theta \) without a valid \( \theta \). 2. The expressions in terms of \( p \) are: - \( 5.2.1 = 5.2p \) - \( 5.2.2 = -5.2p \) If you have any further clarifications or corrections regarding the sine equation, please let me know!

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

To solve \( 2 \sin \theta + 7 = 0 \), we first isolate \( \sin \theta \) by moving \( 7 \) to the other side: \[ 2 \sin \theta = -7 \implies \sin \theta = -\frac{7}{2} \] However, this value is outside the possible range for the sine function, which is from \(-1\) to \(1\). So, let's double-check the initial interpretation. If we correctly interpret \( \theta \) as an angle, we've actually made a mistake; since \( \sin \theta \) cannot equal \(-\frac{7}{2}\), we need to review the context. If we consider \( \theta \) in the range \(90^{\circ} < \theta < 270^{\circ}\), we might have made an error in solving for the sine function, as \(2 \sin \theta + 7 = 0\) doesn’t yield a valid sine value. In essence, let’s focus on what the problem requires regarding \( 24 \tan \theta + 25 \cos \theta \): since \( \sin \theta\) is not valid, we won’t be able to compute that expression. Now, expressing terms in terms of \(p\): \[ 5.2.1 \cos(-20^{\circ}) = \cos(20^{\circ}) = p \] \[ 5.2.2 \cos(160^{\circ}) = -\cos(20^{\circ}) = -p \] So, specifically, the answers are \(5.2.1\) gives \(5.2 \cdot 1 \cdot p\) and \(5.2.2\) gives \(5.2 \cdot (-p)\) respectively.

Related Questions

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy