Question
upstudy study bank question image url

Given that \( \tan \phi=4 \), find the other trigonometric functions. \( \sin \phi=\frac{4 \sqrt{17}}{17} \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.) \( \cos \phi=\frac{\sqrt{17}}{17} \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.) \( \cot \phi=\frac{1}{4} \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.) csc \( \phi=- \) - (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)

Ask by Bowers Paul. in Saudi Arabia
Nov 21,2024

Upstudy AI Solution

Tutor-Verified Answer

Answer

1. \( \sin \phi = \frac{4 \sqrt{17}}{17} \) 2. \( \cos \phi = \frac{\sqrt{17}}{17} \) 3. \( \cot \phi = \frac{1}{4} \) 4. \( \csc \phi = \frac{\sqrt{17}}{4} \)

Solution

بالتأكيد، سأقدم لك الحلول للوظائف التربيعية الأخرى لـ \( \phi \) مع \( \tan \phi = 4 \). 1. **حساب \( \sin \phi \):** نعلم أن \( \tan \phi = \frac{\sin \phi}{\cos \phi} \). إذا كان \( \tan \phi = 4 \)، فإننا نستطيع القول: \[ \sin \phi = 4 \cos \phi \] نستخدم معادلة Pythagorean \( \sin^2 \phi + \cos^2 \phi = 1 \) لحل هذه المعادلة: \[ (4 \cos \phi)^2 + \cos^2 \phi = 1 \] \[ 16 \cos^2 \phi + \cos^2 \phi = 1 \] \[ 17 \cos^2 \phi = 1 \] \[ \cos \phi = \pm \frac{1}{\sqrt{17}} \] ناخذاً في الاعتبار أن \( \tan \phi = 4 \) هو إيجابي، فإن \( \cos \phi \) يجب أن يكون إيجابيًا أيضًا: \[ \cos \phi = \frac{1}{\sqrt{17}} \] الآن نحسب \( \sin \phi \): \[ \sin \phi = 4 \cos \phi = 4 \cdot \frac{1}{\sqrt{17}} = \frac{4 \sqrt{17}}{17} \] 2. **حساب \( \cos \phi \):** كما ذكرنا سابقًا: \[ \cos \phi = \frac{1}{\sqrt{17}} \] لذا: \[ \cos \phi = \frac{\sqrt{17}}{17} \] 3. **حساب \( \cot \phi \):** نعلم أن \( \cot \phi = \frac{1}{\tan \phi} \). إذا كان \( \tan \phi = 4 \)، فإن: \[ \cot \phi = \frac{1}{4} \] 4. **حساب \( \csc \phi \):** نعلم أن \( \csc \phi = \frac{1}{\sin \phi} \). إذا كان \( \sin \phi = \frac{4 \sqrt{17}}{17} \)، فإن: \[ \csc \phi = \frac{1}{\frac{4 \sqrt{17}}{17}} = \frac{17}{4 \sqrt{17}} = \frac{\sqrt{17}}{4} \] إليك الحلول باللغة العربية: 1. \( \sin \phi = \frac{4 \sqrt{17}}{17} \) 2. \( \cos \phi = \frac{\sqrt{17}}{17} \) 3. \( \cot \phi = \frac{1}{4} \) 4. \( \csc \phi = \frac{\sqrt{17}}{4} \)

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

To find \( \csc \phi \), we can use the relationship between sine and cosecant. Since \( \csc \phi = \frac{1}{\sin \phi} \), we can substitute the value of \( \sin \phi \): \[ \csc \phi = \frac{1}{\frac{4 \sqrt{17}}{17}} = \frac{17}{4 \sqrt{17}} \] To simplify, we multiply the numerator and the denominator by \( \sqrt{17} \): \[ \csc \phi = \frac{17 \sqrt{17}}{4 \cdot 17} = \frac{\sqrt{17}}{4} \] Thus, the value of \( \csc \phi \) is: \[ \csc \phi = \frac{\sqrt{17}}{4} \] Hope that helps!

Related Questions

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy