Question
Given that \( \tan \phi=4 \), find the other trigonometric functions. \( \sin \phi=\frac{4 \sqrt{17}}{17} \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.) \( \cos \phi=\frac{\sqrt{17}}{17} \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.) \( \cot \phi=\frac{1}{4} \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.) csc \( \phi=- \) - (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)
Ask by Bowers Paul. in Saudi Arabia
Nov 21,2024
Upstudy AI Solution
Tutor-Verified Answer
Answer
1. \( \sin \phi = \frac{4 \sqrt{17}}{17} \)
2. \( \cos \phi = \frac{\sqrt{17}}{17} \)
3. \( \cot \phi = \frac{1}{4} \)
4. \( \csc \phi = \frac{\sqrt{17}}{4} \)
Solution
بالتأكيد، سأقدم لك الحلول للوظائف التربيعية الأخرى لـ \( \phi \) مع \( \tan \phi = 4 \).
1. **حساب \( \sin \phi \):**
نعلم أن \( \tan \phi = \frac{\sin \phi}{\cos \phi} \). إذا كان \( \tan \phi = 4 \)، فإننا نستطيع القول:
\[
\sin \phi = 4 \cos \phi
\]
نستخدم معادلة Pythagorean \( \sin^2 \phi + \cos^2 \phi = 1 \) لحل هذه المعادلة:
\[
(4 \cos \phi)^2 + \cos^2 \phi = 1
\]
\[
16 \cos^2 \phi + \cos^2 \phi = 1
\]
\[
17 \cos^2 \phi = 1
\]
\[
\cos \phi = \pm \frac{1}{\sqrt{17}}
\]
ناخذاً في الاعتبار أن \( \tan \phi = 4 \) هو إيجابي، فإن \( \cos \phi \) يجب أن يكون إيجابيًا أيضًا:
\[
\cos \phi = \frac{1}{\sqrt{17}}
\]
الآن نحسب \( \sin \phi \):
\[
\sin \phi = 4 \cos \phi = 4 \cdot \frac{1}{\sqrt{17}} = \frac{4 \sqrt{17}}{17}
\]
2. **حساب \( \cos \phi \):**
كما ذكرنا سابقًا:
\[
\cos \phi = \frac{1}{\sqrt{17}}
\]
لذا:
\[
\cos \phi = \frac{\sqrt{17}}{17}
\]
3. **حساب \( \cot \phi \):**
نعلم أن \( \cot \phi = \frac{1}{\tan \phi} \). إذا كان \( \tan \phi = 4 \)، فإن:
\[
\cot \phi = \frac{1}{4}
\]
4. **حساب \( \csc \phi \):**
نعلم أن \( \csc \phi = \frac{1}{\sin \phi} \). إذا كان \( \sin \phi = \frac{4 \sqrt{17}}{17} \)، فإن:
\[
\csc \phi = \frac{1}{\frac{4 \sqrt{17}}{17}} = \frac{17}{4 \sqrt{17}} = \frac{\sqrt{17}}{4}
\]
إليك الحلول باللغة العربية:
1. \( \sin \phi = \frac{4 \sqrt{17}}{17} \)
2. \( \cos \phi = \frac{\sqrt{17}}{17} \)
3. \( \cot \phi = \frac{1}{4} \)
4. \( \csc \phi = \frac{\sqrt{17}}{4} \)
Answered by UpStudy AI and reviewed by a Professional Tutor
Like
error msg


Bonus Knowledge
To find \( \csc \phi \), we can use the relationship between sine and cosecant. Since \( \csc \phi = \frac{1}{\sin \phi} \), we can substitute the value of \( \sin \phi \): \[ \csc \phi = \frac{1}{\frac{4 \sqrt{17}}{17}} = \frac{17}{4 \sqrt{17}} \] To simplify, we multiply the numerator and the denominator by \( \sqrt{17} \): \[ \csc \phi = \frac{17 \sqrt{17}}{4 \cdot 17} = \frac{\sqrt{17}}{4} \] Thus, the value of \( \csc \phi \) is: \[ \csc \phi = \frac{\sqrt{17}}{4} \] Hope that helps!