Pregunta
Given that \( \tan \phi=4 \), find the other trigonometric functions. \( \sin \phi=\frac{4 \sqrt{17}}{17} \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.) \( \cos \phi=\frac{\sqrt{17}}{17} \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.) \( \cot \phi=\frac{1}{4} \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.) csc \( \phi=- \) - (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)
Ask by Bowers Paul. in Saudi Arabia
Nov 21,2024
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
1. \( \sin \phi = \frac{4 \sqrt{17}}{17} \)
2. \( \cos \phi = \frac{\sqrt{17}}{17} \)
3. \( \cot \phi = \frac{1}{4} \)
4. \( \csc \phi = \frac{\sqrt{17}}{4} \)
Solución
بالتأكيد، سأقدم لك الحلول للوظائف التربيعية الأخرى لـ \( \phi \) مع \( \tan \phi = 4 \).
1. **حساب \( \sin \phi \):**
نعلم أن \( \tan \phi = \frac{\sin \phi}{\cos \phi} \). إذا كان \( \tan \phi = 4 \)، فإننا نستطيع القول:
\[
\sin \phi = 4 \cos \phi
\]
نستخدم معادلة Pythagorean \( \sin^2 \phi + \cos^2 \phi = 1 \) لحل هذه المعادلة:
\[
(4 \cos \phi)^2 + \cos^2 \phi = 1
\]
\[
16 \cos^2 \phi + \cos^2 \phi = 1
\]
\[
17 \cos^2 \phi = 1
\]
\[
\cos \phi = \pm \frac{1}{\sqrt{17}}
\]
ناخذاً في الاعتبار أن \( \tan \phi = 4 \) هو إيجابي، فإن \( \cos \phi \) يجب أن يكون إيجابيًا أيضًا:
\[
\cos \phi = \frac{1}{\sqrt{17}}
\]
الآن نحسب \( \sin \phi \):
\[
\sin \phi = 4 \cos \phi = 4 \cdot \frac{1}{\sqrt{17}} = \frac{4 \sqrt{17}}{17}
\]
2. **حساب \( \cos \phi \):**
كما ذكرنا سابقًا:
\[
\cos \phi = \frac{1}{\sqrt{17}}
\]
لذا:
\[
\cos \phi = \frac{\sqrt{17}}{17}
\]
3. **حساب \( \cot \phi \):**
نعلم أن \( \cot \phi = \frac{1}{\tan \phi} \). إذا كان \( \tan \phi = 4 \)، فإن:
\[
\cot \phi = \frac{1}{4}
\]
4. **حساب \( \csc \phi \):**
نعلم أن \( \csc \phi = \frac{1}{\sin \phi} \). إذا كان \( \sin \phi = \frac{4 \sqrt{17}}{17} \)، فإن:
\[
\csc \phi = \frac{1}{\frac{4 \sqrt{17}}{17}} = \frac{17}{4 \sqrt{17}} = \frac{\sqrt{17}}{4}
\]
إليك الحلول باللغة العربية:
1. \( \sin \phi = \frac{4 \sqrt{17}}{17} \)
2. \( \cos \phi = \frac{\sqrt{17}}{17} \)
3. \( \cot \phi = \frac{1}{4} \)
4. \( \csc \phi = \frac{\sqrt{17}}{4} \)
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Bonus Knowledge
To find \( \csc \phi \), we can use the relationship between sine and cosecant. Since \( \csc \phi = \frac{1}{\sin \phi} \), we can substitute the value of \( \sin \phi \): \[ \csc \phi = \frac{1}{\frac{4 \sqrt{17}}{17}} = \frac{17}{4 \sqrt{17}} \] To simplify, we multiply the numerator and the denominator by \( \sqrt{17} \): \[ \csc \phi = \frac{17 \sqrt{17}}{4 \cdot 17} = \frac{\sqrt{17}}{4} \] Thus, the value of \( \csc \phi \) is: \[ \csc \phi = \frac{\sqrt{17}}{4} \] Hope that helps!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium