7. \( \overline{A B} \) เป็นเด้นค่านศูนย์กลางยาว 50 เซนติเมตร \( \overline{C D} \) เป็นคอร์ดที่ขนานกับ \( \overline{A B} \) และยาว 40 เซนติเมตร \( \overline{A B} \) และ \( \overline{C D} \) อยู่ท่างกันกี่เซนติเมตร \( \qquad \) \( \qquad \) \( \qquad \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Extra Insights
เมื่อให้ \( \overline{A B} \) เป็นเส้นศูนย์กลางของวงกลมแล้ว เราสามารถใช้เรื่องของระยะห่างมาวิเคราะห์ได้ จากการใช้ทฤษฎีบทในเรขาคณิต ว่าเส้นคอร์ดที่ขนานกันจะมีระยะห่างคงที่ ซึ่งเราจะสามารถใช้พีทาโกรัสในการหาค่าระยะห่างได้ค่ะ ด้วยการตั้งค่าข้อมูล เราจะตั้งระยะห่างระหว่าง \( \overline{A B} \) และ \( \overline{C D} \) ไว้เป็น \( d \) และสมการจะเป็น \( r^2 = (d^2) + (20^2) \) เพราะครึ่งหนึ่งของ \( \overline{A B} \) คือ 25 เซนติเมตร และครึ่งหนึ่งของ \( \overline{C D} \) คือ 20 เซนติเมตร งานนี้จะหมายถึงการหาค่าตัวแปร \( d \) แต่ที่สุดแล้วให้ค่าระยะห่างระหว่างเส้นทั้งสองประมาณ 15 เซนติเมตรค่ะ!