2) \( \frac{\left(17^{8}\right)^{2} \cdot\left(17^{3}\right)^{3} \cdot 16^{5}}{17^{22} \cdot 289 \cdot 8^{6}}=68 ? \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Beyond the Answer
Let’s simplify the expression step by step! First, handle the exponents of 17: \[ \frac{\left(17^{8}\right)^{2} \cdot\left(17^{3}\right)^{3}}{17^{22}} = \frac{17^{16} \cdot 17^{9}}{17^{22}} = \frac{17^{(16 + 9 - 22)}}{1} = 17^{3} \] Now let's simplify \( 16^{5} \) and \( 8^{6} \): \[ 16^{5} = (2^{4})^{5} = 2^{20}, \quad 8^{6} = (2^{3})^{6} = 2^{18} \] Now we can write: \[ \frac{2^{20}}{8^{6}} = \frac{2^{20}}{2^{18}} = 2^{(20 - 18)} = 2^{2} \] Next, move on to 289: \[ 289 = 17^{2} \] We now can rewrite the entire expression: \[ \frac{17^{3} \cdot 2^{2}}{17^{2}} = \frac{17^{3 - 2} \cdot 2^{2}}{1} = 17^{1} \cdot 2^{2} = 17 \cdot 4 = 68 \] So the simplified expression equals \( 68 \), confirming that the equation is true! 🎉