Question
upstudy study bank question image url

4) \( \left(m^{3} n p^{7^{3}}\right)^{3} \)

Ask by Stewart Gross. in Peru
Nov 02,2024

Upstudy AI Solution

Tutor-Verified Answer

Answer

La expresión simplificada es \( m^{9} n^{3} p^{7^{3} \cdot 3} \).

Solution

Para simplificar la expresión \( \left(m^{3} n p^{7^{3}}\right)^{3} \), aplicamos la propiedad de las potencias que dice que \((a^m)^n = a^{m \cdot n}\). 1. Aplicamos la potencia a cada término dentro del paréntesis: \[ \left(m^{3}\right)^{3} = m^{3 \cdot 3} = m^{9} \] \[ \left(n\right)^{3} = n^{1 \cdot 3} = n^{3} \] \[ \left(p^{7^{3}}\right)^{3} = p^{7^{3} \cdot 3} = p^{7^{3} \cdot 3} \] 2. Ahora, combinamos todos los términos: \[ \left(m^{3} n p^{7^{3}}\right)^{3} = m^{9} n^{3} p^{7^{3} \cdot 3} \] Por lo tanto, la expresión simplificada es: \[ m^{9} n^{3} p^{7^{3} \cdot 3} \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

To simplify the expression \( \left(m^{3} n p^{7^{3}}\right)^{3} \), you want to use the power of a product property, which states that \((a \cdot b)^{c} = a^{c} \cdot b^{c}\). Applying this, we break it down into: 1. \( \left(m^{3}\right)^{3} = m^{3 \cdot 3} = m^{9} \) 2. \( \left(n\right)^{3} = n^{3} \) 3. \( \left(p^{7^{3}}\right)^{3} = p^{7^{3} \cdot 3} \) Now we need to simplify \( 7^{3} \cdot 3 = 343 \cdot 3 = 1029 \). Combining all parts, we get: \[ m^{9} n^{3} p^{1029} \] So, the fully simplified expression is: \[ m^{9} n^{3} p^{1029} \]

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy