Obtener la siguiente integral definida: \( \int_{0}^{1}\left(\frac{x^{3}+x^{\frac{1}{3}}}{x^{\frac{1}{4}}}\right) d x \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


The Deep Dive
Para resolver la integral definida \( \int_{0}^{1}\left(\frac{x^{3}+x^{\frac{1}{3}}}{x^{\frac{1}{4}}}\right) dx \), primero simplificamos la expresión dentro de la integral. Esto nos da: \[ \frac{x^{3}}{x^{\frac{1}{4}}} + \frac{x^{\frac{1}{3}}}{x^{\frac{1}{4}}} = x^{3 - \frac{1}{4}} + x^{\frac{1}{3} - \frac{1}{4}} = x^{\frac{12}{4} - \frac{1}{4}} + x^{\frac{4}{12} - \frac{3}{12}} = x^{\frac{11}{4}} + x^{\frac{1}{12}} \] Así, la integral se convierte en: \[ \int_{0}^{1} \left( x^{\frac{11}{4}} + x^{\frac{1}{12}} \right) dx \] Ahora, integrando término a término: 1. Para \( x^{\frac{11}{4}} \): \[ \int x^{\frac{11}{4}} dx = \frac{x^{\frac{11}{4}+1}}{\frac{11}{4}+1} = \frac{x^{\frac{15}{4}}}{\frac{15}{4}} = \frac{4}{15} x^{\frac{15}{4}} \] 2. Para \( x^{\frac{1}{12}} \): \[ \int x^{\frac{1}{12}} dx = \frac{x^{\frac{1}{12}+1}}{\frac{1}{12}+1} = \frac{x^{\frac{13}{12}}}{\frac{13}{12}} = \frac{12}{13} x^{\frac{13}{12}} \] Ahora evaluamos desde 0 hasta 1: \[ \left[\frac{4}{15} x^{\frac{15}{4}} \right]_{0}^{1} + \left[\frac{12}{13} x^{\frac{13}{12}} \right]_{0}^{1} \] Sustituyendo los límites: 1. Para \( \frac{4}{15} x^{\frac{15}{4}} \): \[ \frac{4}{15}(1) - \frac{4}{15}(0) = \frac{4}{15} \] 2. Para \( \frac{12}{13} x^{\frac{13}{12}} \): \[ \frac{12}{13}(1) - \frac{12}{13}(0) = \frac{12}{13} \] Sumando ambos resultados: \[ \frac{4}{15} + \frac{12}{13} \] Ahora, encontramos un común denominador. El mínimo común múltiplo entre 15 y 13 es 195. Entonces: \[ \frac{4}{15} = \frac{4 \times 13}{15 \times 13} = \frac{52}{195} \] \[ \frac{12}{13} = \frac{12 \times 15}{13 \times 15} = \frac{180}{195} \] Finalmente: \[ \frac{52}{195} + \frac{180}{195} = \frac{232}{195} \] Por lo tanto, la integral definida es: \[ \int_{0}^{1}\left(\frac{x^{3}+x^{\frac{1}{3}}}{x^{\frac{1}{4}}}\right) d x = \frac{232}{195} \]