Question
upstudy study bank question image url

Obtener la siguiente integral definida: \( \int_{0}^{1}\left(\frac{x^{3}+x^{\frac{1}{3}}}{x^{\frac{1}{4}}}\right) d x \)

Ask by Alexander Burns. in Mexico
Feb 19,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

La integral definida es igual a \( \frac{232}{195} \).

Solution

Para resolver la integral definida   I = ∫₀¹ [(x³ + x^(1/3)) / x^(1/4)] dx procedemos de la siguiente manera. 1. Escribimos el integrando como la suma de dos términos:   (x³ + x^(1/3)) / x^(1/4) = x^(3 − 1/4) + x^(1/3 − 1/4). 2. Calculamos las potencias:   3 − 1/4 = (12/4 − 1/4) = 11/4  y  1/3 − 1/4 = (4/12 − 3/12) = 1/12. Por lo tanto, la integral se escribe:   I = ∫₀¹ [x^(11/4) + x^(1/12)] dx. 3. Integramos término a término utilizando la regla de potencias:   ∫ x^p dx = x^(p+1) / (p+1), para p ≠ -1. Para el primer término:   ∫₀¹ x^(11/4) dx = [x^(11/4 + 1)] / (11/4 + 1) |₀¹     11/4 + 1 = (11 + 4)/4 = 15/4,     por lo tanto,     = [x^(15/4)] / (15/4) |₀¹ = (4/15)[1^(15/4) − 0^(15/4)] = 4/15. Para el segundo término:   ∫₀¹ x^(1/12) dx = [x^(1/12 + 1)] / (1/12 + 1) |₀¹     1/12 + 1 = (1 + 12)/12 = 13/12,     por lo tanto,     = [x^(13/12)] / (13/12) |₀¹ = (12/13)[1^(13/12) − 0^(13/12)] = 12/13. 4. Sumamos ambos resultados:   I = 4/15 + 12/13. Para combinar en una única fracción con denominador común:   Denominador común: 15 × 13 = 195,   Convertimos:     4/15 = (4 × 13) / 195 = 52/195,     12/13 = (12 × 15) / 195 = 180/195,   por lo tanto,   I = (52 + 180) / 195 = 232/195. La respuesta final es:   I = 232/195.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

Para resolver la integral definida \( \int_{0}^{1}\left(\frac{x^{3}+x^{\frac{1}{3}}}{x^{\frac{1}{4}}}\right) dx \), primero simplificamos la expresión dentro de la integral. Esto nos da: \[ \frac{x^{3}}{x^{\frac{1}{4}}} + \frac{x^{\frac{1}{3}}}{x^{\frac{1}{4}}} = x^{3 - \frac{1}{4}} + x^{\frac{1}{3} - \frac{1}{4}} = x^{\frac{12}{4} - \frac{1}{4}} + x^{\frac{4}{12} - \frac{3}{12}} = x^{\frac{11}{4}} + x^{\frac{1}{12}} \] Así, la integral se convierte en: \[ \int_{0}^{1} \left( x^{\frac{11}{4}} + x^{\frac{1}{12}} \right) dx \] Ahora, integrando término a término: 1. Para \( x^{\frac{11}{4}} \): \[ \int x^{\frac{11}{4}} dx = \frac{x^{\frac{11}{4}+1}}{\frac{11}{4}+1} = \frac{x^{\frac{15}{4}}}{\frac{15}{4}} = \frac{4}{15} x^{\frac{15}{4}} \] 2. Para \( x^{\frac{1}{12}} \): \[ \int x^{\frac{1}{12}} dx = \frac{x^{\frac{1}{12}+1}}{\frac{1}{12}+1} = \frac{x^{\frac{13}{12}}}{\frac{13}{12}} = \frac{12}{13} x^{\frac{13}{12}} \] Ahora evaluamos desde 0 hasta 1: \[ \left[\frac{4}{15} x^{\frac{15}{4}} \right]_{0}^{1} + \left[\frac{12}{13} x^{\frac{13}{12}} \right]_{0}^{1} \] Sustituyendo los límites: 1. Para \( \frac{4}{15} x^{\frac{15}{4}} \): \[ \frac{4}{15}(1) - \frac{4}{15}(0) = \frac{4}{15} \] 2. Para \( \frac{12}{13} x^{\frac{13}{12}} \): \[ \frac{12}{13}(1) - \frac{12}{13}(0) = \frac{12}{13} \] Sumando ambos resultados: \[ \frac{4}{15} + \frac{12}{13} \] Ahora, encontramos un común denominador. El mínimo común múltiplo entre 15 y 13 es 195. Entonces: \[ \frac{4}{15} = \frac{4 \times 13}{15 \times 13} = \frac{52}{195} \] \[ \frac{12}{13} = \frac{12 \times 15}{13 \times 15} = \frac{180}{195} \] Finalmente: \[ \frac{52}{195} + \frac{180}{195} = \frac{232}{195} \] Por lo tanto, la integral definida es: \[ \int_{0}^{1}\left(\frac{x^{3}+x^{\frac{1}{3}}}{x^{\frac{1}{4}}}\right) d x = \frac{232}{195} \]

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy