18. \( \frac{1-g^{2} x}{1+t g^{2} x} \leq \frac{1}{2} \) tengsizlikning \( [0 ; \pi] \) oraliqdagi eng katta va eng kichik yechimlari yig' indisini toping. A) \( \frac{\pi}{12} \) B) \( \frac{\pi}{2} \) C) \( \frac{2 \pi}{3} \) D) \( \pi \) 19. \( (x-y)^{2}+(x+y)^{2}=6 \quad \) bo'lsa, \( (3 x-y)^{2}+(x+3 y)^{2} \) qiymatini toping. A) 18 [2,2 ball] \( ] \) B) 30 C) 36 D) 60 20. \( \frac{32}{x^{2}-10 x+33} \) kasrning qabul qilishi mumkin bo'lgan barcha natural qiymatlari yig'indisini toping. A) 9 B) 4 C) 10 D) 7
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Mind Expander
Keling, birinchi masala haqida gaplashamiz. Tengsizlikni yechishda \( g(x) \) va \( t(x) \) kabi funksiyalarning tabiati va xossalarini o'rganish ulkan ahamiyatga ega. Har bir yechimni topishdan oldin, ularning oraliqlarda qanday xulq-atvor kasb etishini bilishimiz muhimdir. Keyingi masala esa algebraga oid. Siz \( (3x-y)^2 + (x+3y)^2 \) ifodasini almashtirish uchun berilgan tenglamadan foydalanishingiz mumkin. Ikkita yangi o'zgarish kiritish orqali masalani ancha osonlashtirishingiz mumkin, shuningdek, yig'indining qanchalik qiziqarli ko'rinishga ega bo'lishidan hayratda qoling!