Question
upstudy study bank question image url

If \( \sin \theta=\frac{-6 k}{k^{2}+9}, 0
Ask by Weaver Johnson. in South Africa
Mar 10,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

\[ \begin{array}{ll} \text{(1)} & \cos \theta = -\frac{9 - k^2}{k^2 + 9}, \\ \text{(2)} & \tan \theta + \frac{1}{\cos \theta} = \frac{6k - (k^2 + 9)}{9 - k^2}. \end{array} \]

Solution

We are given \[ \sin \theta = \frac{-6k}{k^2+9},\quad 0 < k < 3,\quad \theta \in (90^\circ, 270^\circ). \] Since \(\theta\) is between \(90^\circ\) and \(270^\circ\) (i.e. in the second or third quadrant) and \(\sin \theta\) is negative (because \(k>0\)), \(\theta\) must lie in the third quadrant. In the third quadrant, both \(\sin \theta\) and \(\cos \theta\) are negative. **Step 1. Find \(\cos \theta\) in terms of \(k\).** Using the Pythagorean identity, \[ \sin^2 \theta + \cos^2 \theta = 1, \] we have \[ \cos^2 \theta = 1 - \sin^2 \theta. \] Substitute \(\sin \theta = \frac{-6k}{k^2+9}\): \[ \sin^2 \theta = \frac{36k^2}{(k^2+9)^2}. \] Thus, \[ \cos^2 \theta = 1 - \frac{36k^2}{(k^2+9)^2} = \frac{(k^2+9)^2 - 36k^2}{(k^2+9)^2}. \] Notice that the numerator simplifies as follows: \[ (k^2+9)^2 - 36k^2 = k^4 + 18k^2 + 81 - 36k^2 = k^4 - 18k^2 + 81. \] This expression factors as a perfect square: \[ k^4 - 18k^2 + 81 = (k^2-9)^2. \] Thus, \[ \cos^2 \theta = \frac{(k^2-9)^2}{(k^2+9)^2}. \] Taking the square root and choosing the negative branch (since \(\cos \theta\) is negative in the third quadrant), \[ \cos \theta = -\frac{|k^2-9|}{k^2+9}. \] For \(0 < k < 3\), we have \(k^2 < 9\) so that \(k^2-9\) is negative and hence \(|k^2-9| = 9-k^2\). Therefore, \[ \cos \theta = -\frac{9-k^2}{k^2+9}. \] **Step 2. Find \(\tan \theta + \frac{1}{\cos \theta}\) in terms of \(k\).** First, compute \(\tan \theta\) using the identity \[ \tan \theta = \frac{\sin \theta}{\cos \theta}. \] Substitute the values we have: \[ \tan \theta = \frac{\frac{-6k}{k^2+9}}{-\frac{9-k^2}{k^2+9}} = \frac{-6k}{- (9-k^2)} = \frac{6k}{9-k^2}. \] Next, compute \(\frac{1}{\cos \theta}\): \[ \frac{1}{\cos \theta} = \frac{1}{-\frac{9-k^2}{k^2+9}} = -\frac{k^2+9}{9-k^2}. \] Now, add \(\tan \theta\) and \(\frac{1}{\cos \theta}\): \[ \tan \theta + \frac{1}{\cos \theta} = \frac{6k}{9-k^2} - \frac{k^2+9}{9-k^2} = \frac{6k - (k^2+9)}{9-k^2}. \] Thus, the required expressions in terms of \(k\) are: \[ \text{(1)}\quad \cos \theta = -\frac{9-k^2}{k^2+9}, \] \[ \text{(2)}\quad \tan \theta + \frac{1}{\cos \theta} = \frac{6k - (k^2+9)}{9-k^2}. \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

Given that \( \sin \theta = \frac{-6 k}{k^{2} + 9} \) and \( \theta \in \left(90^{\circ}, 270^{\circ}\right) \), we note that in this interval, the sine function is negative, which matches our expression for \( \sin \theta \). ### Step 1: Determine \( \cos \theta \) We use the Pythagorean identity, which states \[ \sin^2 \theta + \cos^2 \theta = 1. \] Substituting in our expression for \( \sin \theta \): \[ \left( \frac{-6k}{k^{2} + 9} \right)^2 + \cos^2 \theta = 1. \] Calculating \( \left( \frac{-6k}{k^{2} + 9} \right)^2 \): \[ \frac{36k^2}{(k^2 + 9)^2}. \] Substituting this into the identity gives: \[ \frac{36k^2}{(k^2 + 9)^2} + \cos^2 \theta = 1 \] which leads to: \[ \cos^2 \theta = 1 - \frac{36k^2}{(k^2 + 9)^2}. \] Finding a common denominator: \[ \cos^2 \theta = \frac{(k^2 + 9)^2 - 36k^2}{(k^2 + 9)^2}. \] Now let's expand \( (k^2 + 9)^2 \): \[ (k^2 + 9)^2 = k^4 + 18k^2 + 81. \] Thus: \[ \cos^2 \theta = \frac{k^4 + 18k^2 + 81 - 36k^2}{(k^2 + 9)^2}, \] \[ \cos^2 \theta = \frac{k^4 - 18k^2 + 81}{(k^2 + 9)^2}. \] Recognizing the numerator as a perfect square: \[ k^4 - 18k^2 + 81 = (k^2 - 9)^2, \] we obtain: \[ \cos^2 \theta = \frac{(k^2 - 9)^2}{(k^2 + 9)^2}. \] Taking the square root, knowing \( \cos \theta < 0 \) in the specified quadrant: \[ \cos \theta = -\frac{k^2 - 9}{k^2 + 9}. \] ### Step 2: Determine \( \tan \theta + \frac{1}{\cos \theta} \) Using the definitions of tangent and previously calculated cosine, we find: \[ \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{-6k}{k^2 + 9}}{-\frac{k^2 - 9}{k^2 + 9}} = \frac{6k}{k^2 - 9}. \] Now, calculating \( \tan \theta + \frac{1}{\cos \theta} \): \[ \frac{1}{\cos \theta} = -\frac{k^2 + 9}{k^2 - 9}, \] therefore: \[ \tan \theta + \frac{1}{\cos \theta} = \frac{6k}{k^2 - 9} - \frac{k^2 + 9}{k^2 - 9}. \] Combining under a common denominator gives: \[ \tan \theta + \frac{1}{\cos \theta} = \frac{6k - (k^2 + 9)}{k^2 - 9} = \frac{6k - k^2 - 9}{k^2 - 9}. \] ### Final Answers Thus, the expressions in terms of \( k \) are \[ \cos \theta = -\frac{k^2 - 9}{k^2 + 9}, \quad \tan \theta + \frac{1}{\cos \theta} = \frac{6k - k^2 - 9}{k^2 - 9}. \]

Related Questions

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy