Question
upstudy study bank question image url

Question \( 3 \quad[9] \) Find the exact values \( \begin{array}{l}\text { (a) } \sin \left(\frac{19 \pi}{12}\right) \\ \text { (Do not convert to degrees!!) } \\ \text { (b) } \sin \left(\cos ^{-1}\left(\frac{3}{5}\right)+\sin ^{-1}\left(\frac{12}{13}\right)\right)\end{array} \)

Ask by Adkins Hart. in South Africa
Mar 10,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

\[ \sin\left(\frac{19\pi}{12}\right) = -\frac{\sqrt{2}+\sqrt{6}}{4} \] \[ \sin\left(\cos^{-1}\left(\frac{3}{5}\right) + \sin^{-1}\left(\frac{12}{13}\right)\right) = \frac{56}{65} \]

Solution

We wish to find: \[ \text{(a) } \sin\left(\frac{19\pi}{12}\right) \] \[ \text{(b) } \sin\left(\cos^{-1}\left(\frac{3}{5}\right) + \sin^{-1}\left(\frac{12}{13}\right)\right) \] ### Part (a) 1. First, express \(\frac{19\pi}{12}\) in terms of a known angle. Notice that \[ \frac{19\pi}{12} = \pi + \frac{7\pi}{12}. \] 2. Since \(\sin(\pi + \theta) = -\sin(\theta)\), we have \[ \sin\left(\frac{19\pi}{12}\right) = -\sin\left(\frac{7\pi}{12}\right). \] 3. Write \(\frac{7\pi}{12}\) as the sum of two angles whose trigonometric values are known. We can write \[ \frac{7\pi}{12} = \frac{\pi}{4} + \frac{\pi}{3}. \] 4. Using the sine addition formula: \[ \sin\left(\frac{\pi}{4} + \frac{\pi}{3}\right) = \sin\frac{\pi}{4}\cos\frac{\pi}{3} + \cos\frac{\pi}{4}\sin\frac{\pi}{3}. \] 5. Substitute the known values: \[ \sin\frac{\pi}{4} = \frac{\sqrt{2}}{2}, \quad \cos\frac{\pi}{4} = \frac{\sqrt{2}}{2}, \] \[ \cos\frac{\pi}{3} = \frac{1}{2}, \quad \sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}. \] 6. Compute the expression: \[ \sin\left(\frac{\pi}{4} + \frac{\pi}{3}\right) = \frac{\sqrt{2}}{2}\cdot\frac{1}{2} + \frac{\sqrt{2}}{2}\cdot\frac{\sqrt{3}}{2} = \frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4} = \frac{\sqrt{2}+\sqrt{6}}{4}. \] 7. Therefore, \[ \sin\left(\frac{19\pi}{12}\right) = -\sin\left(\frac{7\pi}{12}\right) = -\frac{\sqrt{2}+\sqrt{6}}{4}. \] ### Part (b) 1. Let \[ A = \cos^{-1}\left(\frac{3}{5}\right) \quad \text{and} \quad B = \sin^{-1}\left(\frac{12}{13}\right). \] Then we know: \[ \cos A = \frac{3}{5}, \quad \sin B = \frac{12}{13}. \] 2. Find \(\sin A\) using the Pythagorean identity: \[ \sin A = \sqrt{1-\cos^2A} = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \sqrt{1-\frac{9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5}. \] 3. Find \(\cos B\) similarly: \[ \cos B = \sqrt{1-\sin^2B} = \sqrt{1-\left(\frac{12}{13}\right)^2} = \sqrt{1-\frac{144}{169}} = \sqrt{\frac{25}{169}} = \frac{5}{13}. \] 4. Now, use the sine addition formula: \[ \sin(A+B) = \sin A\cos B + \cos A\sin B. \] 5. Substitute the known values: \[ \sin(A+B) = \frac{4}{5}\cdot\frac{5}{13} + \frac{3}{5}\cdot\frac{12}{13} = \frac{20}{65} + \frac{36}{65} = \frac{56}{65}. \] ### Final Answers \[ \boxed{\sin\left(\frac{19\pi}{12}\right) = -\frac{\sqrt{2}+\sqrt{6}}{4}} \] \[ \boxed{\sin\left(\cos^{-1}\left(\frac{3}{5}\right) + \sin^{-1}\left(\frac{12}{13}\right)\right) = \frac{56}{65}} \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

To find the exact values of the two sine expressions, let's break them down. **(a)** To find \( \sin \left( \frac{19 \pi}{12} \right) \), we can express \( \frac{19 \pi}{12} \) as a sum of angles. Notice that: \[ \frac{19 \pi}{12} = \frac{12 \pi}{12} + \frac{7 \pi}{12} = \pi + \frac{7 \pi}{12} \] The sine function is periodic with a period of \( 2\pi \) and odd, thus: \[ \sin \left(\frac{19 \pi}{12}\right) = \sin \left(\pi + \frac{7 \pi}{12}\right) = -\sin \left(\frac{7 \pi}{12}\right) \] Now, \( \frac{7 \pi}{12} = \frac{3 \pi}{12} + \frac{4 \pi}{12} = \frac{\pi}{4} + \frac{\pi}{3} \). Using the sine addition formula: \[ \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \] where \( \alpha = \frac{\pi}{4} \) and \( \beta = \frac{\pi}{3} \): \[ = \sin \left(\frac{\pi}{4}\right) \cos \left(\frac{\pi}{3}\right) + \cos \left(\frac{\pi}{4}\right) \sin \left(\frac{\pi}{3}\right) \] \[ = \frac{\sqrt{2}}{2} \cdot \frac{1}{2} + \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4} = \frac{\sqrt{2} + \sqrt{6}}{4} \] Thus, \[ \sin\left(\frac{19 \pi}{12}\right) = -\frac{\sqrt{2} + \sqrt{6}}{4} \] **(b)** For \( \sin \left(\cos^{-1}\left(\frac{3}{5}\right) + \sin^{-1}\left(\frac{12}{13}\right)\right) \), we use the sine addition formula again: Let \( x = \cos^{-1} \left( \frac{3}{5} \right) \) and \( y = \sin^{-1} \left( \frac{12}{13} \right) \). Thus, \[ \sin(x+y) = \sin x \cos y + \cos x \sin y \] From \( x = \cos^{-1} \left( \frac{3}{5} \right) \): \[ \sin x = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \sqrt{1 - \frac{9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5} \] From \( y = \sin^{-1} \left( \frac{12}{13} \right) \): \[ \cos y = \sqrt{1 - \left(\frac{12}{13}\right)^2} = \sqrt{1 - \frac{144}{169}} = \sqrt{\frac{25}{169}} = \frac{5}{13} \] Calculating: \[ \sin(x+y) = \left(\frac{4}{5}\right) \left(\frac{5}{13}\right) + \left(\frac{3}{5}\right) \left(\frac{12}{13}\right) \] \[ = \frac{20}{65} + \frac{36}{65} = \frac{56}{65} \] So, the exact values are: (a) \(-\frac{\sqrt{2} + \sqrt{6}}{4}\) and (b) \(\frac{56}{65}\).

Related Questions

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy