Question \( 3 \quad[9] \) Find the exact values \( \begin{array}{l}\text { (a) } \sin \left(\frac{19 \pi}{12}\right) \\ \text { (Do not convert to degrees!!) } \\ \text { (b) } \sin \left(\cos ^{-1}\left(\frac{3}{5}\right)+\sin ^{-1}\left(\frac{12}{13}\right)\right)\end{array} \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


The Deep Dive
To find the exact values of the two sine expressions, let's break them down. **(a)** To find \( \sin \left( \frac{19 \pi}{12} \right) \), we can express \( \frac{19 \pi}{12} \) as a sum of angles. Notice that: \[ \frac{19 \pi}{12} = \frac{12 \pi}{12} + \frac{7 \pi}{12} = \pi + \frac{7 \pi}{12} \] The sine function is periodic with a period of \( 2\pi \) and odd, thus: \[ \sin \left(\frac{19 \pi}{12}\right) = \sin \left(\pi + \frac{7 \pi}{12}\right) = -\sin \left(\frac{7 \pi}{12}\right) \] Now, \( \frac{7 \pi}{12} = \frac{3 \pi}{12} + \frac{4 \pi}{12} = \frac{\pi}{4} + \frac{\pi}{3} \). Using the sine addition formula: \[ \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \] where \( \alpha = \frac{\pi}{4} \) and \( \beta = \frac{\pi}{3} \): \[ = \sin \left(\frac{\pi}{4}\right) \cos \left(\frac{\pi}{3}\right) + \cos \left(\frac{\pi}{4}\right) \sin \left(\frac{\pi}{3}\right) \] \[ = \frac{\sqrt{2}}{2} \cdot \frac{1}{2} + \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4} = \frac{\sqrt{2} + \sqrt{6}}{4} \] Thus, \[ \sin\left(\frac{19 \pi}{12}\right) = -\frac{\sqrt{2} + \sqrt{6}}{4} \] **(b)** For \( \sin \left(\cos^{-1}\left(\frac{3}{5}\right) + \sin^{-1}\left(\frac{12}{13}\right)\right) \), we use the sine addition formula again: Let \( x = \cos^{-1} \left( \frac{3}{5} \right) \) and \( y = \sin^{-1} \left( \frac{12}{13} \right) \). Thus, \[ \sin(x+y) = \sin x \cos y + \cos x \sin y \] From \( x = \cos^{-1} \left( \frac{3}{5} \right) \): \[ \sin x = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \sqrt{1 - \frac{9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5} \] From \( y = \sin^{-1} \left( \frac{12}{13} \right) \): \[ \cos y = \sqrt{1 - \left(\frac{12}{13}\right)^2} = \sqrt{1 - \frac{144}{169}} = \sqrt{\frac{25}{169}} = \frac{5}{13} \] Calculating: \[ \sin(x+y) = \left(\frac{4}{5}\right) \left(\frac{5}{13}\right) + \left(\frac{3}{5}\right) \left(\frac{12}{13}\right) \] \[ = \frac{20}{65} + \frac{36}{65} = \frac{56}{65} \] So, the exact values are: (a) \(-\frac{\sqrt{2} + \sqrt{6}}{4}\) and (b) \(\frac{56}{65}\).