Question
upstudy study bank question image url

\( \sin ( x + \frac { \pi } { 4 } ) \leq \frac { 1 } { 2 } \)

Ask by Reese Page. in Kazakhstan
Nov 02,2024

Upstudy AI Solution

Tutor-Verified Answer

Answer

Решение неравенства \( \sin \left( x + \frac{\pi}{4} \right) \leq \frac{1}{2} \) можно выразить как: \[ x \in \left[ -\frac{\pi}{12} + 2k\pi, \frac{7\pi}{12} + 2k\pi \right] \cup \left[ \frac{11\pi}{12} + 2k\pi, \frac{19\pi}{12} + 2k\pi \right], \quad k \in \mathbb{Z} \]

Solution

Чтобы решить неравенство \( \sin \left( x + \frac{\pi}{4} \right) \leq \frac{1}{2} \), начнем с нахождения значений \( x + \frac{\pi}{4} \), для которых синус меньше или равен \( \frac{1}{2} \). Синус принимает значение \( \frac{1}{2} \) при углах: \[ \frac{\pi}{6} + 2k\pi \quad \text{и} \quad \frac{5\pi}{6} + 2k\pi, \quad k \in \mathbb{Z} \] Таким образом, неравенство \( \sin \left( x + \frac{\pi}{4} \right) \leq \frac{1}{2} \) будет выполняться в интервалах, где \( x + \frac{\pi}{4} \) находится между этими значениями. 1. Найдем границы: \[ x + \frac{\pi}{4} \leq \frac{1}{2} \implies x \leq \frac{1}{2} - \frac{\pi}{4} \] \[ x + \frac{\pi}{4} \geq \frac{5\pi}{6} \implies x \geq \frac{5\pi}{6} - \frac{\pi}{4} = \frac{5\pi}{6} - \frac{3\pi}{12} = \frac{5\pi}{6} - \frac{2\pi}{12} = \frac{5\pi}{6} - \frac{\pi}{6} = \frac{4\pi}{6} = \frac{2\pi}{3} \] 2. Теперь учтем периодичность синуса. Поскольку синус периодичен с периодом \( 2\pi \), мы можем записать: \[ x + \frac{\pi}{4} \in \left[ \frac{\pi}{6} + 2k\pi, \frac{5\pi}{6} + 2k\pi \right] \quad \text{и} \quad x + \frac{\pi}{4} \in \left[ \frac{7\pi}{6} + 2k\pi, \frac{11\pi}{6} + 2k\pi \right] \] 3. Перепишем это в терминах \( x \): \[ x \in \left[ \frac{\pi}{6} - \frac{\pi}{4} + 2k\pi, \frac{5\pi}{6} - \frac{\pi}{4} + 2k\pi \right] \] \[ x \in \left[ \frac{\pi}{6} - \frac{3\pi}{12} + 2k\pi, \frac{5\pi}{6} - \frac{3\pi}{12} + 2k\pi \right] \] \[ x \in \left[ \frac{2\pi}{12} - \frac{3\pi}{12} + 2k\pi, \frac{10\pi}{12} - \frac{3\pi}{12} + 2k\pi \right] \] \[ x \in \left[ -\frac{\pi}{12} + 2k\pi, \frac{7\pi}{12} + 2k\pi \right] \] Аналогично для второго интервала: \[ x \in \left[ \frac{7\pi}{6} - \frac{\pi}{4} + 2k\pi, \frac{11\pi}{6} - \frac{\pi}{4} + 2k\pi \right] \] \[ x \in \left[ \frac{14\pi}{12} - \frac{3\pi}{12} + 2k\pi, \frac{22\pi}{12} - \frac{3\pi}{12} + 2k\pi \right] \] \[ x \in \left[ \frac{11\pi}{12} + 2k\pi, \frac{19\pi}{12} + 2k\pi \right] \] Таким образом, окончательный ответ: \[ x \in \bigcup_{k \in \mathbb{Z}} \left[ -\frac{\pi}{12} + 2k\pi, \frac{7\pi}{12} + 2k\pi \right] \cup \left[ \frac{11\pi}{12} + 2k\pi, \frac{19\pi}{12} + 2k\pi \right] \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

To solve the inequality \( \sin \left( x + \frac{ \pi }{ 4 } \right) \leq \frac{1}{2} \), we start by recognizing that the sine function oscillates between -1 and 1. Given that \( \frac{1}{2} \) corresponds to an angle of \( \frac{\pi}{6} \), we know that this inequality will hold true in certain intervals of \( x + \frac{ \pi }{ 4 } \). This inequality implies that \( x + \frac{\pi}{4} \) should fall within the arcs where the sine function yields values up to \( \frac{1}{2} \). Thus, we can express the intervals as: \[ x + \frac{ \pi } { 4 } \leq \frac{ \pi }{6} + 2k\pi \quad \text{or} \quad x + \frac{ \pi } { 4 } \geq \frac{5\pi}{6} + 2k\pi \] for any integer \( k \). From these inequalities, we can isolate \( x \): 1. For \( x + \frac{ \pi }{ 4 } \leq \frac{ \pi }{ 6} + 2k\pi \): \[ x \leq \frac{ \pi }{ 6} - \frac{ \pi }{ 4} + 2k\pi \] Which simplifies to \( x \leq -\frac{\pi}{12} + 2k\pi \). 2. For \( x + \frac{ \pi }{ 4 } \geq \frac{5\pi}{6} + 2k\pi \): \[ x \geq \frac{5\pi}{6} - \frac{ \pi }{ 4} + 2k\pi \] This simplifies to \( x \geq \frac{7\pi}{24} + 2k\pi \). Therefore, we can conclude the intervals for \( x \) based on the integer values of \( k \).

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy