\( \sin ( x + \frac { \pi } { 4 } ) \leq \frac { 1 } { 2 } \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Bonus Knowledge
To solve the inequality \( \sin \left( x + \frac{ \pi }{ 4 } \right) \leq \frac{1}{2} \), we start by recognizing that the sine function oscillates between -1 and 1. Given that \( \frac{1}{2} \) corresponds to an angle of \( \frac{\pi}{6} \), we know that this inequality will hold true in certain intervals of \( x + \frac{ \pi }{ 4 } \). This inequality implies that \( x + \frac{\pi}{4} \) should fall within the arcs where the sine function yields values up to \( \frac{1}{2} \). Thus, we can express the intervals as: \[ x + \frac{ \pi } { 4 } \leq \frac{ \pi }{6} + 2k\pi \quad \text{or} \quad x + \frac{ \pi } { 4 } \geq \frac{5\pi}{6} + 2k\pi \] for any integer \( k \). From these inequalities, we can isolate \( x \): 1. For \( x + \frac{ \pi }{ 4 } \leq \frac{ \pi }{ 6} + 2k\pi \): \[ x \leq \frac{ \pi }{ 6} - \frac{ \pi }{ 4} + 2k\pi \] Which simplifies to \( x \leq -\frac{\pi}{12} + 2k\pi \). 2. For \( x + \frac{ \pi }{ 4 } \geq \frac{5\pi}{6} + 2k\pi \): \[ x \geq \frac{5\pi}{6} - \frac{ \pi }{ 4} + 2k\pi \] This simplifies to \( x \geq \frac{7\pi}{24} + 2k\pi \). Therefore, we can conclude the intervals for \( x \) based on the integer values of \( k \).