Question
upstudy study bank question image url

Find the value of \( 45^{\circ}-\sin ^{2} 30^{\circ} \) (a) \( \sin 45^{\circ} \cdot \cos 40^{\circ} \)

Ask by Brooks Mccoy. in Nepal
Nov 14,2024

Upstudy AI Solution

Tutor-Verified Answer

Answer

The value of \( 45^{\circ} - \sin^2 30^{\circ} \) is \( \frac{179}{4} \).

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Answered by UpStudy AI and reviewed by a Professional Tutor

Extra Insights

To find the value of \( 45^{\circ} - \sin^{2} 30^{\circ} \), we first need to calculate \( \sin^{2} 30^{\circ} \). We know that \( \sin 30^{\circ} = \frac{1}{2} \), so: \[ \sin^{2} 30^{\circ} = \left(\frac{1}{2}\right)^{2} = \frac{1}{4}. \] Now, substituting this value back into the expression: \[ 45^{\circ} - \sin^{2} 30^{\circ} = 45^{\circ} - \frac{1}{4}. \] Since \( 45^{\circ} \) can be expressed in decimal form as \( 45.0 \) degrees, we rewrite the expression as: \[ 45.0 - 0.25 = 44.75. \] Now let's look at the option given: \( \sin 45^{\circ} \cdot \cos 40^{\circ} \). Calculating \( \sin 45^{\circ} \): \[ \sin 45^{\circ} = \frac{\sqrt{2}}{2}. \] Now, we need to evaluate \( \cos 40^{\circ} \). This value is typically not a simple fraction, so we will leave it in symbolic form: \[ \sin 45^{\circ} \cdot \cos 40^{\circ} = \frac{\sqrt{2}}{2} \cdot \cos 40^{\circ}. \] To find the relationship, simplify the problem numerically and see if they match up. Both involve operations and approximations but seem to diverge from each other as \( \cos 40^{\circ} \) is not simply resolvable without an exact angle or calculator, while \( 44.75 \) is clearly defined. Thus, we conclude \( 45^{\circ} - \sin^{2} 30^{\circ} \) equals \( 44.75 \), providing a clear distinction from \( \sin 45^{\circ} \cdot \cos 40^{\circ} \).

Related Questions

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy