Pregunta
upstudy study bank question image url

Find the value of \( 45^{\circ}-\sin ^{2} 30^{\circ} \) (a) \( \sin 45^{\circ} \cdot \cos 40^{\circ} \)

Ask by Brooks Mccoy. in Nepal
Nov 14,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The value of \( 45^{\circ} - \sin^2 30^{\circ} \) is \( \frac{179}{4} \).

Solución

To find the value of \( 45^{\circ} - \sin^2 30^{\circ} \), we first need to calculate \( \sin^2 30^{\circ} \). We know that: \[ \sin 30^{\circ} = \frac{1}{2} \] Thus, \[ \sin^2 30^{\circ} = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \] Now we can substitute this value into the expression: \[ 45^{\circ} - \sin^2 30^{\circ} = 45^{\circ} - \frac{1}{4} \] Next, we need to convert \( 45^{\circ} \) into a fraction that can be combined with \( \frac{1}{4} \). We can express \( 45^{\circ} \) in terms of a fraction of degrees: \[ 45^{\circ} = \frac{45}{1} = \frac{180}{4} \] Now we can perform the subtraction: \[ \frac{180}{4} - \frac{1}{4} = \frac{180 - 1}{4} = \frac{179}{4} \] Next, we need to evaluate \( \sin 45^{\circ} \cdot \cos 40^{\circ} \) to see if it equals \( \frac{179}{4} \). We know: \[ \sin 45^{\circ} = \frac{\sqrt{2}}{2} \] Now we need to find \( \cos 40^{\circ} \). We will leave it as \( \cos 40^{\circ} \) for now, so we have: \[ \sin 45^{\circ} \cdot \cos 40^{\circ} = \frac{\sqrt{2}}{2} \cdot \cos 40^{\circ} \] To compare \( \frac{179}{4} \) with \( \frac{\sqrt{2}}{2} \cdot \cos 40^{\circ} \), we need to evaluate \( \frac{\sqrt{2}}{2} \cdot \cos 40^{\circ} \). However, without specific values for \( \cos 40^{\circ} \), we cannot directly compute this. Instead, we can conclude that \( 45^{\circ} - \sin^2 30^{\circ} = \frac{179}{4} \) is a numerical value, while \( \sin 45^{\circ} \cdot \cos 40^{\circ} \) is a product of trigonometric functions. Thus, the final answer is: \[ \boxed{\frac{179}{4}} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the value of \( 45^{\circ} - \sin^{2} 30^{\circ} \), we first need to calculate \( \sin^{2} 30^{\circ} \). We know that \( \sin 30^{\circ} = \frac{1}{2} \), so: \[ \sin^{2} 30^{\circ} = \left(\frac{1}{2}\right)^{2} = \frac{1}{4}. \] Now, substituting this value back into the expression: \[ 45^{\circ} - \sin^{2} 30^{\circ} = 45^{\circ} - \frac{1}{4}. \] Since \( 45^{\circ} \) can be expressed in decimal form as \( 45.0 \) degrees, we rewrite the expression as: \[ 45.0 - 0.25 = 44.75. \] Now let's look at the option given: \( \sin 45^{\circ} \cdot \cos 40^{\circ} \). Calculating \( \sin 45^{\circ} \): \[ \sin 45^{\circ} = \frac{\sqrt{2}}{2}. \] Now, we need to evaluate \( \cos 40^{\circ} \). This value is typically not a simple fraction, so we will leave it in symbolic form: \[ \sin 45^{\circ} \cdot \cos 40^{\circ} = \frac{\sqrt{2}}{2} \cdot \cos 40^{\circ}. \] To find the relationship, simplify the problem numerically and see if they match up. Both involve operations and approximations but seem to diverge from each other as \( \cos 40^{\circ} \) is not simply resolvable without an exact angle or calculator, while \( 44.75 \) is clearly defined. Thus, we conclude \( 45^{\circ} - \sin^{2} 30^{\circ} \) equals \( 44.75 \), providing a clear distinction from \( \sin 45^{\circ} \cdot \cos 40^{\circ} \).

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad