Question
upstudy study bank question image url

Which of the following expressions is equivalent to \( 12 x=3+2 x+19 ? \) Select all that apply \( \square \) A. \( 10 x+16 \) \( \square \) B. \( 14 x+10 \) \( \square \) C. \( 2(7 x+5) \) \( \square \) D. \( 14 x+16 \) \( \square \) E. \( 17 x+13 \)

Ask by Vega Reeves. in the United States
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

None of the options A, B, C, D, or E are equivalent to the expression \( 12x = 3 + 2x + 19 \).

Solution

To determine which expressions are equivalent to \( 12x = 3 + 2x + 19 \), we first need to simplify the given equation. 1. **Combine like terms on the right side:** \[ 3 + 19 = 22 \] So, the equation becomes: \[ 12x = 2x + 22 \] 2. **Isolate \( x \) by moving \( 2x \) to the left side:** \[ 12x - 2x = 22 \] This simplifies to: \[ 10x = 22 \] 3. **Now, we can express this equation in different forms to compare with the options given.** - Dividing both sides by 2: \[ 5x = 11 \] - Rearranging gives: \[ 10x - 22 = 0 \] Next, we will check each option to see if they can be simplified to match \( 10x = 22 \). ### Checking the options: **A. \( 10x + 16 \)** This expression does not equal \( 0 \) when set to \( 10x - 22 \). **B. \( 14x + 10 \)** This expression does not equal \( 0 \) when set to \( 10x - 22 \). **C. \( 2(7x + 5) \)** Expanding this gives: \[ 2(7x + 5) = 14x + 10 \] This does not equal \( 10x - 22 \). **D. \( 14x + 16 \)** This expression does not equal \( 0 \) when set to \( 10x - 22 \). **E. \( 17x + 13 \)** This expression does not equal \( 0 \) when set to \( 10x - 22 \). ### Conclusion: None of the options provided are equivalent to the expression \( 12x = 3 + 2x + 19 \). Therefore, the answer is that none of the options (A, B, C, D, E) are correct.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

To solve the equation \( 12 x=3+2 x+19 \), we first simplify the right side: 1. Combine like terms on the right: \( 3 + 19 = 22 \), so the equation becomes: \( 12 x = 2 x + 22 \). 2. Next, we isolate \( x \) by subtracting \( 2 x \) from both sides: \( 12 x - 2 x = 22 \), which simplifies to: \( 10 x = 22 \). Now that we know \( 10 x = 22 \), let's compare this with the options given: - A. \( 10 x + 16 \): This actually becomes \( 22 + 16 = 38\) when \( 10 x = 22 \). - B. \( 14 x + 10 \): If we substitute \( x \) from \( x = \frac{22}{10} = 2.2 \), it doesn't match. - C. \( 2(7 x + 5) \): Substituting \( x = 2.2 \) gives \( 2(7(2.2) + 5) = 2(15.4 + 5) = 2(20.4) = 40.8\), which isn't equivalent. - D. \( 14 x + 16 \): Similarly, this doesn't prove equivalent since it leads to a different sum. - E. \( 17 x + 13 \): Testing this would yield no matching terms. After checking all options, none of them are equivalent as \( 10 x = 22 \).

Related Questions

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Algebra Mexico Feb 26, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy