Question
upstudy study bank question image url

43. Dadas as matrizes \( A=\left(\begin{array}{ll}1 & 3 \\ 0 & 2\end{array}\right) \) e \( B=\binom{7}{4} \), obtenha a ma- triz \( X \) tal que: \( A \cdot X=B \)

Ask by Lambert Hampton. in Brazil
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

A matriz \( X \) é (1, 2)ᵀ.

Solution

Queremos encontrar a matriz X, com dimensão 2×1, da forma X = (x, y)ᵀ, tal que:   A · X = B Onde:   A = [1 3      0 2]   B = (7, 4)ᵀ Multiplicando, temos:   A · X = [1·x + 3·y        0·x + 2·y] = [x + 3y             2y] Igualando a B:   x + 3y = 7  (1)   2y = 4   (2) A partir da equação (2):   2y = 4 ⟹ y = 4/2 = 2 Substituindo y = 2 na equação (1):   x + 3(2) = 7 ⟹ x + 6 = 7 ⟹ x = 7 - 6 = 1 Portanto, a matriz solução é:   X = (1, 2)ᵀ Assim, encontramos X = (1, 2)ᵀ que satisfaz A·X = B.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

Para resolver a equação matricial \( A \cdot X = B \), precisamos encontrar a matriz \( X \). Primeiramente, a matriz \( A \) é inversível, já que seu determinante (que é \( 1 \cdot 2 - 0 \cdot 3 = 2 \)) é diferente de zero. Portanto, podemos multiplicar ambos os lados da equação pela inversa de \( A \): \[ X = A^{-1} \cdot B. \] Para calcular \( A^{-1} \), usamos a fórmula para a inversa de uma matriz \( 2 \times 2 \): \[ A^{-1} = \frac{1}{\text{det}(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}, \] onde \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \). Assim, temos: \[ A^{-1} = \frac{1}{2} \begin{pmatrix} 2 & -3 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -\frac{3}{2} \\ 0 & \frac{1}{2} \end{pmatrix}. \] Agora, substituímos o valor de \( B = \binom{7}{4} = 35 \). Como \( B \) é uma matriz \( 1 \times 1 \), podemos considerar que: \[ B = \begin{pmatrix} 35 \end{pmatrix}. \] Assim, calculamos \( X \): \[ X = A^{-1} \cdot B = \begin{pmatrix} 1 & -\frac{3}{2} \\ 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 35 \end{pmatrix} = \begin{pmatrix} 1 \cdot 35 + (-\frac{3}{2}) \cdot 0 \\ 0 \cdot 35 + \frac{1}{2} \cdot 35 \end{pmatrix} = \begin{pmatrix} 35 \\ \frac{35}{2} \end{pmatrix}. \] Portanto, a matriz \( X \) é \[ X = \begin{pmatrix} 35 \\ \frac{35}{2} \end{pmatrix}. \]

Related Questions

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Algebra Mexico Feb 26, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy