Question
upstudy study bank question image url

\( \frac { x - a } { b + c } + \frac { x - b } { a + c } + \frac { x - c } { a + b } = 3 \)

Ask by Klein Warner. in Ecuador
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

La solución es \( x = a + b + c \).

Solution

Para resolver la ecuación   (x – a)/(b + c) + (x – b)/(a + c) + (x – c)/(a + b) = 3 podemos verificar de forma directa si existe un valor sencillo de x que la satifeche. Notamos que la expresión es simétrica respecto a a, b y c, lo que sugiere probar con   x = a + b + c. Sustituyendo x = a + b + c en cada uno de los términos obtenemos:  1ª término: [(a + b + c) – a] / (b + c) = (b + c) / (b + c) = 1  2º término: [(a + b + c) – b] / (a + c) = (a + c) / (a + c) = 1  3º término: [(a + b + c) – c] / (a + b) = (a + b) / (a + b) = 1 Al sumarlos se tiene:  1 + 1 + 1 = 3. Como la ecuación es lineal en x (si consideramos los denominadores como constantes, suponiendo que (a + b), (a + c) y (b + c) son distintos de cero), la solución es única. Así, se concluye que:  x = a + b + c es la solución de la ecuación.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

Let's expand this equation step-by-step! If we set \( S = \frac { x - a } { b + c } + \frac { x - b } { a + c } + \frac { x - c } { a + b } \), we can multiply through by the denominators to eliminate them, leading us to a more manageable expression. Focusing on the left-hand side, we can rearrange it into a single fraction. Each term can be unified with a common denominator \( (b+c)(a+c)(a+b) \). On simplifying, we will group the terms involving \( x \) together and separate constant terms involving \( a, b, c \). Ultimately, you can solve for \( x \) which provides insight into how \( x \) relates to the parameters \( a, b, \) and \( c \). Want to know more about specific values you can assign to \( a, b, \) and \( c \) for your equation?

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy