Question
upstudy study bank question image url

Evaluate the integral. \[ \int_{0}^{1} \frac{12}{4 x^{2}+5 x+1} d x \]

Ask by Bob Logan. in the United States
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The integral evaluates to \(4\ln\left(\frac{5}{2}\right)\).

Solution

Calculate the integral \( \int_{0}^{1} \frac{12}{4x^2+5x+1} dx \). Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int_{0}^{1} \frac{12}{4x^{2}+5x+1} dx\) - step1: Evaluate the integral: \(\int \frac{12}{4x^{2}+5x+1} dx\) - step2: Rewrite the expression: \(\int 12\times \frac{1}{4x^{2}+5x+1} dx\) - step3: Use properties of integrals: \(12\times \int \frac{1}{4x^{2}+5x+1} dx\) - step4: Rewrite the fraction: \(12\times \int \left(-\frac{1}{3x+3}+\frac{4}{12x+3}\right) dx\) - step5: Use properties of integrals: \(12\left(\int -\frac{1}{3x+3} dx+\int \frac{4}{12x+3} dx\right)\) - step6: Calculate: \(12\times \int -\frac{1}{3x+3} dx+12\times \int \frac{4}{12x+3} dx\) - step7: Evaluate the integral: \(-4\ln{\left(\left|x+1\right|\right)}+12\times \int \frac{4}{12x+3} dx\) - step8: Evaluate the integral: \(-4\ln{\left(\left|x+1\right|\right)}+4\ln{\left(\left|4x+1\right|\right)}\) - step9: Rewrite the expression: \(-\ln{\left(\left|x+1\right|\right)}\times 4+\ln{\left(\left|4x+1\right|\right)}\times 4\) - step10: Factor the expression: \(\left(-\ln{\left(\left|x+1\right|\right)}+\ln{\left(\left|4x+1\right|\right)}\right)\times 4\) - step11: Add the terms: \(\ln{\left(\frac{\left|4x+1\right|}{\left|x+1\right|}\right)}\times 4\) - step12: Multiply the terms: \(4\ln{\left(\frac{\left|4x+1\right|}{\left|x+1\right|}\right)}\) - step13: Return the limits: \(\left(4\ln{\left(\frac{\left|4x+1\right|}{\left|x+1\right|}\right)}\right)\bigg |_{0}^{1}\) - step14: Calculate the value: \(4\ln{\left(\frac{5}{2}\right)}\) The integral of \(\frac{12}{4x^2+5x+1}\) from 0 to 1 is \(4\ln(\frac{5}{2})\).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

To evaluate the integral \[ I = \int_{0}^{1} \frac{12}{4 x^{2}+5 x+1} \, dx, \] we start by factoring the quadratic expression in the denominator. The quadratic \(4x^2 + 5x + 1\) can be factored using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-5 \pm \sqrt{5^2 - 4 \cdot 4 \cdot 1}}{2 \cdot 4} = \frac{-5 \pm \sqrt{25 - 16}}{8} = \frac{-5 \pm 3}{8}. \] This gives us the roots: \[ x_1 = \frac{-2}{8} = -\frac{1}{4}, \quad x_2 = \frac{-8}{8} = -1. \] Thus, we can write \[ 4x^2 + 5x + 1 = 4\left(x + \frac{1}{4}\right)\left(x + 1\right). \] We can proceed with partial fraction decomposition: \[ \frac{12}{4(x + \frac{1}{4})(x + 1)} = \frac{A}{x + \frac{1}{4}} + \frac{B}{x + 1}. \] Multiplying through by the denominator gives: \[ 12 = A\left(x + 1\right) + B\left(x + \frac{1}{4}\right). \] To find coefficients \(A\) and \(B\), we can choose convenient values of \(x\). 1. Let \(x = -1\): \[ 12 = A(0) + B\left(-1 + \frac{1}{4}\right) \quad \Rightarrow \quad 12 = B\left(-\frac{3}{4}\right) \quad \Rightarrow \quad B = -16. \] 2. Let \(x = -\frac{1}{4}\): \[ 12 = A\left(-\frac{1}{4} + 1\right) + B(0) \quad \Rightarrow \quad 12 = A\left(\frac{3}{4}\right) \quad \Rightarrow \quad A = 16. \] Thus, the partial fraction decomposition is: \[ \frac{12}{4x^2 + 5x + 1} = \frac{16}{x + \frac{1}{4}} - \frac{16}{x + 1}. \] Now we can rewrite the integral: \[ I = \int_{0}^{1} \left(\frac{16}{x + \frac{1}{4}} - \frac{16}{x + 1}\right) \, dx. \] This separates into two integrals: \[ I = 16 \int_{0}^{1} \frac{1}{x + \frac{1}{4}} \, dx - 16 \int_{0}^{1} \frac{1}{x + 1} \, dx. \] Calculating the first integral: \[ \int \frac{1}{x + \frac{1}{4}} \, dx = \ln \left|x + \frac{1}{4}\right|. \] Evaluating from 0 to 1: \[ \left[ \ln \left|x + \frac{1}{4}\right| \right]_{0}^{1} = \ln \left(1 + \frac{1}{4}\right) - \ln \left(\frac{1}{4}\right) = \ln \left(\frac{5}{4}\right) + \ln 4 = \ln 5. \] For the second integral: \[ \int \frac{1}{x + 1} \, dx = \ln |x + 1|. \] Evaluating from 0 to 1: \[ \left[ \ln |x + 1| \right]_{0}^{1} = \ln 2 - \ln 1 = \ln 2. \] Putting it all together: \[ I = 16 \left(\ln 5 - \ln 2\right) = 16 \ln \left(\frac{5}{2}\right). \] Thus, the final value of the integral is: \[ \boxed{16 \ln \left(\frac{5}{2}\right)}. \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy