Answer
**Synthetic Division Results:**
- \( x^{3}-2x^{2}+9 \) divided by \( (x+2) \): Quotient \( x^{2}-4x+8 \), Remainder \( -7 \)
- \( 4x^{7}+3 \) divided by \( (x-3) \): Quotient \( 4x^{6}+12x^{5}+36x^{4}+108x^{3}+324x^{2}+975 \), Remainder \( 975 \)
- \( x^{4}-2x^{3}-3x^{2}-4x-8 \) divided by \( (x-2) \): Quotient \( x^{3}-3x-10 \), Remainder \( -16 \)
**Factorizations:**
- \( x^{3}-2x^{2}-5x+6 = (x + 2)(x - 1)(x - 3) \)
- \( x^{4}-1 = (x - 1)(x + 1)(x^{2} + 1) \)
- \( x^{4}-2x^{3}+x-2 = (x + 1)(x - 2)(x^{2} + ax + b) \) (further factorization needed for the quadratic).
Solution
Solve the equation by following steps:
- step0: Solve for \(x\):
\(x^{4}-1=0\)
- step1: Move the constant to the right side:
\(x^{4}=0+1\)
- step2: Remove 0:
\(x^{4}=1\)
- step3: Simplify the expression:
\(x=\pm \sqrt[4]{1}\)
- step4: Simplify:
\(x=\pm 1\)
- step5: Separate into possible cases:
\(\begin{align}&x=1\\&x=-1\end{align}\)
- step6: Rewrite:
\(x_{1}=-1,x_{2}=1\)
Solve the equation \( x^{3}-2 x^{2}-5 x+6=0 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(x^{3}-2x^{2}-5x+6=0\)
- step1: Factor the expression:
\(\left(x-3\right)\left(x-1\right)\left(x+2\right)=0\)
- step2: Separate into possible cases:
\(\begin{align}&x-3=0\\&x-1=0\\&x+2=0\end{align}\)
- step3: Solve the equation:
\(\begin{align}&x=3\\&x=1\\&x=-2\end{align}\)
- step4: Rewrite:
\(x_{1}=-2,x_{2}=1,x_{3}=3\)
Solve the equation \( 4 x^{7}+3=0 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(4x^{7}+3=0\)
- step1: Move the constant to the right side:
\(4x^{7}=0-3\)
- step2: Remove 0:
\(4x^{7}=-3\)
- step3: Divide both sides:
\(\frac{4x^{7}}{4}=\frac{-3}{4}\)
- step4: Divide the numbers:
\(x^{7}=-\frac{3}{4}\)
- step5: Simplify the equation:
\(\sqrt[7]{x^{7}}=\sqrt[7]{-\frac{3}{4}}\)
- step6: Calculate:
\(x=\sqrt[7]{-\frac{3}{4}}\)
- step7: Simplify the root:
\(x=-\frac{\sqrt[7]{96}}{2}\)
Solve the equation \( x^{4}-2 x^{3}+x-2=0 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(x^{4}-2x^{3}+x-2=0\)
- step1: Factor the expression:
\(\left(x-2\right)\left(x+1\right)\left(x^{2}-x+1\right)=0\)
- step2: Separate into possible cases:
\(\begin{align}&x-2=0\\&x+1=0\\&x^{2}-x+1=0\end{align}\)
- step3: Solve the equation:
\(\begin{align}&x=2\\&x=-1\\&x \notin \mathbb{R}\end{align}\)
- step4: Find the union:
\(\begin{align}&x=2\\&x=-1\end{align}\)
- step5: Rewrite:
\(x_{1}=-1,x_{2}=2\)
Solve the equation \( x^{3}-2 x^{2}+9=0 \).
Solve the equation(The complex numbers system) by following steps:
- step0: Solve for \(x\) in the complex numbers system:
\(x^{3}-2x^{2}+9=0\)
- step1: Calculate:
\(\begin{align}&x\approx -1.584544\\&x\approx 1.792272+1.570869i\\&x\approx 1.792272-1.570869i\end{align}\)
- step2: Rewrite:
\(x_{1}\approx 1.792272-1.570869i,x_{2}\approx 1.792272+1.570869i,x_{3}\approx -1.584544\)
- step3: Remove the complex number(s):
\(x\approx -1.584544\)
Solve the equation \( x^{4}-2 x^{3}-3 x^{2}-4 x-8=0 \).
Solve the equation(The complex numbers system) by following steps:
- step0: Solve for \(x\) in the complex numbers system:
\(x^{4}-2x^{3}-3x^{2}-4x-8=0\)
- step1: Calculate:
\(\begin{align}&x\approx 3.419492\\&x\approx -0.040039-1.321014i\\&x\approx -0.040039+1.321014i\\&x\approx -1.339414\end{align}\)
- step2: Rewrite:
\(x_{1}\approx -1.339414,x_{2}\approx -0.040039+1.321014i,x_{3}\approx -0.040039-1.321014i,x_{4}\approx 3.419492\)
- step3: Remove the complex number(s):
\(x_{1}\approx -1.339414,x_{2}\approx 3.419492\)
Let's solve the problems step by step.
### 3. Synthetic Division
#### i) \( x^{3}-2x^{2}+9 \) divided by \( (x+2) \)
To perform synthetic division, we will use the root of \( x + 2 = 0 \), which is \( x = -2 \).
1. Write the coefficients of the polynomial: \( 1, -2, 0, 9 \) (note that the coefficient of \( x \) is 0).
2. Set up synthetic division:
```
-2 | 1 -2 0 9
| -2 8 -16
---------------------
1 -4 8 -7
```
The bottom row gives us the coefficients of the quotient and the remainder:
- Quotient: \( x^{2} - 4x + 8 \)
- Remainder: \( -7 \)
#### iii) \( 4x^{7}+3 \) divided by \( x-3 \)
Using \( x = 3 \):
1. Write the coefficients: \( 4, 0, 0, 0, 0, 0, 3 \).
2. Set up synthetic division:
```
3 | 4 0 0 0 0 0 3
| 12 36 108 324 972
---------------------------
4 12 36 108 324 975
```
The bottom row gives us:
- Quotient: \( 4x^{6} + 12x^{5} + 36x^{4} + 108x^{3} + 324x^{2} + 975 \)
- Remainder: \( 975 \)
#### ii) \( x^{4}-2x^{3}-3x^{2}-4x-8 \) divided by \( x-2 \)
Using \( x = 2 \):
1. Write the coefficients: \( 1, -2, -3, -4, -8 \).
2. Set up synthetic division:
```
2 | 1 -2 -3 -4 -8
| 2 0 -6 -8
-------------------------
1 0 -3 -10 -16
```
The bottom row gives us:
- Quotient: \( x^{3} - 3x - 10 \)
- Remainder: \( -16 \)
### 4. Factorization
#### i) \( x^{3}-2x^{2}-5x+6 \)
Using the roots found earlier:
- Roots: \( x_{1} = -2, x_{2} = 1, x_{3} = 3 \)
Thus, the factorization is:
\[
(x + 2)(x - 1)(x - 3)
\]
#### ii) \( x^{4}-1 \)
This is a difference of squares:
\[
x^{4}-1 = (x^{2}-1)(x^{2}+1) = (x-1)(x+1)(x^{2}+1)
\]
#### iii) \( x^{4}-2x^{3}+x-2 \)
Using the roots found earlier:
- Roots: \( x_{1} = -1, x_{2} = 2 \)
Thus, the factorization is:
\[
(x + 1)(x - 2)(x^{2} + ax + b)
\]
To find \( a \) and \( b \), we can use polynomial long division or synthetic division to find the quadratic factor.
### Summary of Results
1. **Synthetic Division Results:**
- \( x^{3}-2x^{2}+9 \) by \( (x+2) \): Quotient \( x^{2}-4x+8 \), Remainder \( -7 \)
- \( 4x^{7}+3 \) by \( (x-3) \): Quotient \( 4x^{6}+12x^{5}+36x^{4}+108x^{3}+324x^{2}+975 \), Remainder \( 975 \)
- \( x^{4}-2x^{3}-3x^{2}-4x-8 \) by \( (x-2) \): Quotient \( x^{3}-3x-10 \), Remainder \( -16 \)
2. **Factorizations:**
- \( x^{3}-2x^{2}-5x+6 = (x + 2)(x - 1)(x - 3) \)
- \( x^{4}-1 = (x - 1)(x + 1)(x^{2} + 1) \)
- \( x^{4}-2x^{3}+x-2 = (x + 1)(x - 2)(x^{2} + ax + b) \) (further factorization needed for the quadratic).
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution