Question
upstudy study bank question image url

EXERCISE (a) Simplify the followiag \( \begin{array}{lll}\text { (1) } \frac{2 x}{3}+\frac{1}{6} & \text { (2) } \frac{7}{6 x}-\frac{2}{9 y}+\frac{1}{3 x^{2}} & \text { (3) } \frac{3}{x}+\frac{2}{x^{2}} \\ \text { (4) } 1+2-\frac{2 a-1}{2} & \text { (5) } \frac{5}{6 x y}-\frac{x+2}{2 x} & \text { (6) } \frac{5}{2 x}-\frac{x+1}{x-2} \\ \text { (7) } \frac{2}{x}+\frac{5}{x+1} & \text { (8) } \frac{x+2}{x^{2}+2}-\frac{6}{x+2} & \text { (9) } \frac{x-3}{x+3}-\frac{x+3}{x-3} \\ \text { (10) } \frac{4}{(2 x+1)^{2}}-\frac{x+1}{2 x+1} & \text { (11) } \frac{2}{2 x}+\frac{7 x+1}{4 x^{2} y}-\frac{5 x y}{4}+1 \\ \text { (12) } \frac{x-3}{3}-\frac{x-2}{2}+\frac{x+1}{6} & \text { (13) } x-\frac{2 x}{3 x-2}\end{array} \)

Ask by Burton Turnbull. in South Africa
Feb 22,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Here are the simplified results for each expression: 1. \( \frac{2x}{3} + \frac{1}{6} = \frac{4x + 1}{6} \) 2. \( \frac{7}{6x} - \frac{2}{9y} + \frac{1}{3x^2} = \frac{21yx - 4x^2 + 6y}{18yx^2} \) 3. \( \frac{3}{x} + \frac{2}{x^2} = \frac{3x + 2}{x^2} \) 4. \( 1 + 2 - \frac{2a - 1}{2} = \frac{7 - 2a}{2} \) 5. \( \frac{5}{6xy} - \frac{x + 2}{2x} = \frac{5 - 3xy - 6y}{6xy} \) 6. \( \frac{5}{2x} - \frac{x + 1}{x - 2} = \frac{3x - 10 - 2x^2}{2x^2 - 4x} \) 7. \( \frac{2}{x} + \frac{5}{x + 1} = \frac{7x + 2}{x^2 + x} \) 8. \( \frac{x + 2}{x^2 + 2} - \frac{6}{x + 2} = \frac{-5x^2 + 4x - 8}{x^3 + 2x^2 + 2x + 4} \) 9. \( \frac{x - 3}{x + 3} - \frac{x + 3}{x - 3} = -\frac{12x}{x^2 - 9} \) 10. \( \frac{4}{(2x + 1)^2} - \frac{x + 1}{2x + 1} = \frac{3 - 2x^2 - 3x}{4x^2 + 4x + 1} \) 11. \( \frac{2}{2x} + \frac{7x + 1}{4x^2y} - \frac{5xy}{4} + 1 = \frac{4xy + 7x + 1 - 5x^3y^2 + 4x^2y}{4yx^2} \) 12. \( \frac{x - 3}{3} - \frac{x - 2}{2} + \frac{x + 1}{6} = \frac{1}{6} \) 13. \( x - \frac{2x}{3x - 2} = \frac{3x^2 - 4x}{3x - 2} \) If you need further assistance or explanations for any specific step, feel free to ask!

Solution

Simplify the expression by following steps: - step0: Solution: \(\frac{3}{x}+\frac{2}{x^{2}}\) - step1: Reduce fractions to a common denominator: \(\frac{3x}{x\times x}+\frac{2}{x^{2}}\) - step2: Multiply the terms: \(\frac{3x}{x^{2}}+\frac{2}{x^{2}}\) - step3: Transform the expression: \(\frac{3x+2}{x^{2}}\) Calculate or simplify the expression \( 5/(2*x) - (x + 1)/(x - 2) \). Simplify the expression by following steps: - step0: Solution: \(\frac{5}{2x}-\frac{\left(x+1\right)}{\left(x-2\right)}\) - step1: Remove the parentheses: \(\frac{5}{2x}-\frac{x+1}{x-2}\) - step2: Reduce fractions to a common denominator: \(\frac{5\left(x-2\right)}{2x\left(x-2\right)}-\frac{\left(x+1\right)\times 2x}{\left(x-2\right)\times 2x}\) - step3: Reorder the terms: \(\frac{5\left(x-2\right)}{2x\left(x-2\right)}-\frac{\left(x+1\right)\times 2x}{2\left(x-2\right)x}\) - step4: Rewrite the expression: \(\frac{5\left(x-2\right)}{2x\left(x-2\right)}-\frac{\left(x+1\right)\times 2x}{2x\left(x-2\right)}\) - step5: Transform the expression: \(\frac{5\left(x-2\right)-\left(x+1\right)\times 2x}{2x\left(x-2\right)}\) - step6: Multiply the terms: \(\frac{5x-10-\left(x+1\right)\times 2x}{2x\left(x-2\right)}\) - step7: Multiply the terms: \(\frac{5x-10-\left(2x^{2}+2x\right)}{2x\left(x-2\right)}\) - step8: Subtract the terms: \(\frac{3x-10-2x^{2}}{2x\left(x-2\right)}\) - step9: Multiply the terms: \(\frac{3x-10-2x^{2}}{2x^{2}-4x}\) Calculate or simplify the expression \( x - (2*x)/(3*x - 2) \). Simplify the expression by following steps: - step0: Solution: \(x-\frac{2x}{\left(3x-2\right)}\) - step1: Remove the parentheses: \(x-\frac{2x}{3x-2}\) - step2: Reduce fractions to a common denominator: \(\frac{x\left(3x-2\right)}{3x-2}-\frac{2x}{3x-2}\) - step3: Transform the expression: \(\frac{x\left(3x-2\right)-2x}{3x-2}\) - step4: Multiply the terms: \(\frac{3x^{2}-2x-2x}{3x-2}\) - step5: Subtract the terms: \(\frac{3x^{2}-4x}{3x-2}\) Calculate or simplify the expression \( 2/x + 5/(x + 1) \). Simplify the expression by following steps: - step0: Solution: \(\frac{2}{x}+\frac{5}{\left(x+1\right)}\) - step1: Remove the parentheses: \(\frac{2}{x}+\frac{5}{x+1}\) - step2: Reduce fractions to a common denominator: \(\frac{2\left(x+1\right)}{x\left(x+1\right)}+\frac{5x}{\left(x+1\right)x}\) - step3: Rewrite the expression: \(\frac{2\left(x+1\right)}{x\left(x+1\right)}+\frac{5x}{x\left(x+1\right)}\) - step4: Transform the expression: \(\frac{2\left(x+1\right)+5x}{x\left(x+1\right)}\) - step5: Multiply the terms: \(\frac{2x+2+5x}{x\left(x+1\right)}\) - step6: Add the terms: \(\frac{7x+2}{x\left(x+1\right)}\) - step7: Multiply the terms: \(\frac{7x+2}{x^{2}+x}\) Calculate or simplify the expression \( (x - 3)/(x + 3) - (x + 3)/(x - 3) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(x-3\right)}{\left(x+3\right)}-\frac{\left(x+3\right)}{\left(x-3\right)}\) - step1: Remove the parentheses: \(\frac{x-3}{x+3}-\frac{x+3}{x-3}\) - step2: Reduce fractions to a common denominator: \(\frac{\left(x-3\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\frac{\left(x+3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\) - step3: Rewrite the expression: \(\frac{\left(x-3\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\frac{\left(x+3\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}\) - step4: Transform the expression: \(\frac{\left(x-3\right)\left(x-3\right)-\left(x+3\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}\) - step5: Multiply the terms: \(\frac{x^{2}-6x+9-\left(x+3\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}\) - step6: Multiply the terms: \(\frac{x^{2}-6x+9-\left(x^{2}+6x+9\right)}{\left(x+3\right)\left(x-3\right)}\) - step7: Calculate: \(\frac{-12x}{\left(x+3\right)\left(x-3\right)}\) - step8: Rewrite the fraction: \(-\frac{12x}{\left(x+3\right)\left(x-3\right)}\) - step9: Multiply the terms: \(-\frac{12x}{x^{2}-9}\) Calculate or simplify the expression \( (x + 2)/(x^2 + 2) - 6/(x + 2) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(x+2\right)}{\left(x^{2}+2\right)}-\frac{6}{\left(x+2\right)}\) - step1: Remove the parentheses: \(\frac{x+2}{x^{2}+2}-\frac{6}{x+2}\) - step2: Reduce fractions to a common denominator: \(\frac{\left(x+2\right)\left(x+2\right)}{\left(x^{2}+2\right)\left(x+2\right)}-\frac{6\left(x^{2}+2\right)}{\left(x+2\right)\left(x^{2}+2\right)}\) - step3: Rewrite the expression: \(\frac{\left(x+2\right)\left(x+2\right)}{\left(x^{2}+2\right)\left(x+2\right)}-\frac{6\left(x^{2}+2\right)}{\left(x^{2}+2\right)\left(x+2\right)}\) - step4: Transform the expression: \(\frac{\left(x+2\right)\left(x+2\right)-6\left(x^{2}+2\right)}{\left(x^{2}+2\right)\left(x+2\right)}\) - step5: Multiply the terms: \(\frac{x^{2}+4x+4-6\left(x^{2}+2\right)}{\left(x^{2}+2\right)\left(x+2\right)}\) - step6: Multiply the terms: \(\frac{x^{2}+4x+4-\left(6x^{2}+12\right)}{\left(x^{2}+2\right)\left(x+2\right)}\) - step7: Calculate: \(\frac{-5x^{2}+4x-8}{\left(x^{2}+2\right)\left(x+2\right)}\) - step8: Multiply the terms: \(\frac{-5x^{2}+4x-8}{x^{3}+2x^{2}+2x+4}\) Calculate or simplify the expression \( 2/(2*x) + (7*x + 1)/(4*x^2*y) - (5*x*y)/4 + 1 \). Simplify the expression by following steps: - step0: Solution: \(\frac{2}{2x}+\frac{\left(7x+1\right)}{4x^{2}y}-\frac{5xy}{4}+1\) - step1: Remove the parentheses: \(\frac{2}{2x}+\frac{7x+1}{4x^{2}y}-\frac{5xy}{4}+1\) - step2: Calculate: \(\frac{1}{x}+\frac{7x+1}{4x^{2}y}-\frac{5xy}{4}+1\) - step3: Reduce fractions to a common denominator: \(\frac{4xy}{x\times 4xy}+\frac{7x+1}{4x^{2}y}-\frac{5xyxyx}{4xyx}+\frac{4xyx}{4xyx}\) - step4: Reorder the terms: \(\frac{4xy}{4x\times xy}+\frac{7x+1}{4x^{2}y}-\frac{5xyxyx}{4xyx}+\frac{4xyx}{4xyx}\) - step5: Multiply the terms: \(\frac{4xy}{4x^{2}y}+\frac{7x+1}{4x^{2}y}-\frac{5xyxyx}{4xyx}+\frac{4xyx}{4xyx}\) - step6: Multiply the terms: \(\frac{4xy}{4x^{2}y}+\frac{7x+1}{4x^{2}y}-\frac{5xyxyx}{4x^{2}y}+\frac{4xyx}{4xyx}\) - step7: Multiply the terms: \(\frac{4xy}{4x^{2}y}+\frac{7x+1}{4x^{2}y}-\frac{5xyxyx}{4x^{2}y}+\frac{4xyx}{4x^{2}y}\) - step8: Transform the expression: \(\frac{4xy+7x+1-5xyxyx+4xyx}{4x^{2}y}\) - step9: Multiply the terms: \(\frac{4xy+7x+1-5x^{3}y^{2}+4xyx}{4x^{2}y}\) - step10: Multiply the terms: \(\frac{4xy+7x+1-5x^{3}y^{2}+4x^{2}y}{4x^{2}y}\) - step11: Simplify: \(\frac{4xy+7x+1-5x^{3}y^{2}+4x^{2}y}{4yx^{2}}\) Calculate or simplify the expression \( (2*x)/3 + 1/6 \). Simplify the expression by following steps: - step0: Solution: \(\frac{2x}{3}+\frac{1}{6}\) - step1: Reduce fractions to a common denominator: \(\frac{2x\times 2}{3\times 2}+\frac{1}{6}\) - step2: Multiply the numbers: \(\frac{2x\times 2}{6}+\frac{1}{6}\) - step3: Transform the expression: \(\frac{2x\times 2+1}{6}\) - step4: Multiply the terms: \(\frac{4x+1}{6}\) Calculate or simplify the expression \( 4/((2*x + 1)^2) - (x + 1)/(2*x + 1) \). Simplify the expression by following steps: - step0: Solution: \(\frac{4}{\left(2x+1\right)^{2}}-\frac{\left(x+1\right)}{\left(2x+1\right)}\) - step1: Remove the parentheses: \(\frac{4}{\left(2x+1\right)^{2}}-\frac{x+1}{2x+1}\) - step2: Reduce fractions to a common denominator: \(\frac{4}{\left(2x+1\right)^{2}}-\frac{\left(x+1\right)\left(2x+1\right)}{\left(2x+1\right)\left(2x+1\right)}\) - step3: Multiply: \(\frac{4}{\left(2x+1\right)^{2}}-\frac{\left(x+1\right)\left(2x+1\right)}{\left(2x+1\right)^{2}}\) - step4: Transform the expression: \(\frac{4-\left(x+1\right)\left(2x+1\right)}{\left(2x+1\right)^{2}}\) - step5: Multiply the terms: \(\frac{4-\left(2x^{2}+3x+1\right)}{\left(2x+1\right)^{2}}\) - step6: Subtract the terms: \(\frac{3-2x^{2}-3x}{\left(2x+1\right)^{2}}\) - step7: Calculate: \(\frac{3-2x^{2}-3x}{4x^{2}+4x+1}\) Calculate or simplify the expression \( 7/(6*x) - 2/(9*y) + 1/(3*x^2) \). Simplify the expression by following steps: - step0: Solution: \(\frac{7}{6x}-\frac{2}{9y}+\frac{1}{3x^{2}}\) - step1: Reduce fractions to a common denominator: \(\frac{7\times 3yx}{6x\times 3yx}-\frac{2\times 2x\times x}{9y\times 2x\times x}+\frac{2\times 3y}{3x^{2}\times 2\times 3y}\) - step2: Multiply the numbers: \(\frac{7\times 3yx}{18xyx}-\frac{2\times 2x\times x}{9y\times 2x\times x}+\frac{2\times 3y}{3x^{2}\times 2\times 3y}\) - step3: Multiply the numbers: \(\frac{7\times 3yx}{18xyx}-\frac{2\times 2x\times x}{18yx\times x}+\frac{2\times 3y}{3x^{2}\times 2\times 3y}\) - step4: Multiply the terms: \(\frac{7\times 3yx}{18xyx}-\frac{2\times 2x\times x}{18yx\times x}+\frac{2\times 3y}{18x^{2}y}\) - step5: Multiply the terms: \(\frac{7\times 3yx}{18x^{2}y}-\frac{2\times 2x\times x}{18yx\times x}+\frac{2\times 3y}{18x^{2}y}\) - step6: Multiply the terms: \(\frac{7\times 3yx}{18x^{2}y}-\frac{2\times 2x\times x}{18yx^{2}}+\frac{2\times 3y}{18x^{2}y}\) - step7: Rewrite the expression: \(\frac{7\times 3yx}{18x^{2}y}-\frac{2\times 2x\times x}{18x^{2}y}+\frac{2\times 3y}{18x^{2}y}\) - step8: Transform the expression: \(\frac{7\times 3yx-2\times 2x\times x+2\times 3y}{18x^{2}y}\) - step9: Multiply the terms: \(\frac{21yx-2\times 2x\times x+2\times 3y}{18x^{2}y}\) - step10: Multiply the terms: \(\frac{21yx-4x^{2}+2\times 3y}{18x^{2}y}\) - step11: Multiply the terms: \(\frac{21yx-4x^{2}+6y}{18x^{2}y}\) - step12: Simplify: \(\frac{21yx-4x^{2}+6y}{18yx^{2}}\) Calculate or simplify the expression \( 1 + 2 - (2*a - 1)/2 \). Simplify the expression by following steps: - step0: Solution: \(1+2-\frac{\left(2a-1\right)}{2}\) - step1: Remove the parentheses: \(1+2-\frac{2a-1}{2}\) - step2: Add the numbers: \(3-\frac{2a-1}{2}\) - step3: Reduce fractions to a common denominator: \(\frac{3\times 2}{2}-\frac{2a-1}{2}\) - step4: Transform the expression: \(\frac{3\times 2-\left(2a-1\right)}{2}\) - step5: Multiply the numbers: \(\frac{6-\left(2a-1\right)}{2}\) - step6: Subtract the terms: \(\frac{7-2a}{2}\) Calculate or simplify the expression \( 5/(6*x*y) - (x + 2)/(2*x) \). Simplify the expression by following steps: - step0: Solution: \(\frac{5}{6xy}-\frac{\left(x+2\right)}{2x}\) - step1: Remove the parentheses: \(\frac{5}{6xy}-\frac{x+2}{2x}\) - step2: Reduce fractions to a common denominator: \(\frac{5}{6xy}-\frac{\left(x+2\right)\times 3y}{2x\times 3y}\) - step3: Multiply the numbers: \(\frac{5}{6xy}-\frac{\left(x+2\right)\times 3y}{6xy}\) - step4: Transform the expression: \(\frac{5-\left(x+2\right)\times 3y}{6xy}\) - step5: Multiply the terms: \(\frac{5-\left(3xy+6y\right)}{6xy}\) - step6: Remove the parentheses: \(\frac{5-3xy-6y}{6xy}\) Calculate or simplify the expression \( (x - 3)/3 - (x - 2)/2 + (x + 1)/6 \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(x-3\right)}{3}-\frac{\left(x-2\right)}{2}+\frac{\left(x+1\right)}{6}\) - step1: Remove the parentheses: \(\frac{x-3}{3}-\frac{x-2}{2}+\frac{x+1}{6}\) - step2: Reduce fractions to a common denominator: \(\frac{\left(x-3\right)\times 2}{3\times 2}-\frac{\left(x-2\right)\times 3}{2\times 3}+\frac{x+1}{6}\) - step3: Multiply the numbers: \(\frac{\left(x-3\right)\times 2}{6}-\frac{\left(x-2\right)\times 3}{2\times 3}+\frac{x+1}{6}\) - step4: Multiply the numbers: \(\frac{\left(x-3\right)\times 2}{6}-\frac{\left(x-2\right)\times 3}{6}+\frac{x+1}{6}\) - step5: Transform the expression: \(\frac{\left(x-3\right)\times 2-\left(x-2\right)\times 3+x+1}{6}\) - step6: Multiply the terms: \(\frac{2x-6-\left(x-2\right)\times 3+x+1}{6}\) - step7: Multiply the terms: \(\frac{2x-6-\left(3x-6\right)+x+1}{6}\) - step8: Calculate: \(\frac{1}{6}\) Here are the simplified results for each expression: 1. **Expression:** \( \frac{2x}{3} + \frac{1}{6} \) **Simplified Result:** \( \frac{4x + 1}{6} \) 2. **Expression:** \( \frac{7}{6x} - \frac{2}{9y} + \frac{1}{3x^2} \) **Simplified Result:** \( \frac{21yx - 4x^2 + 6y}{18yx^2} \) 3. **Expression:** \( \frac{3}{x} + \frac{2}{x^2} \) **Simplified Result:** \( \frac{3x + 2}{x^2} \) 4. **Expression:** \( 1 + 2 - \frac{2a - 1}{2} \) **Simplified Result:** \( \frac{7 - 2a}{2} \) 5. **Expression:** \( \frac{5}{6xy} - \frac{x + 2}{2x} \) **Simplified Result:** \( \frac{5 - 3xy - 6y}{6xy} \) 6. **Expression:** \( \frac{5}{2x} - \frac{x + 1}{x - 2} \) **Simplified Result:** \( \frac{3x - 10 - 2x^2}{2x^2 - 4x} \) 7. **Expression:** \( \frac{2}{x} + \frac{5}{x + 1} \) **Simplified Result:** \( \frac{7x + 2}{x^2 + x} \) 8. **Expression:** \( \frac{x + 2}{x^2 + 2} - \frac{6}{x + 2} \) **Simplified Result:** \( \frac{-5x^2 + 4x - 8}{x^3 + 2x^2 + 2x + 4} \) 9. **Expression:** \( \frac{x - 3}{x + 3} - \frac{x + 3}{x - 3} \) **Simplified Result:** \( -\frac{12x}{x^2 - 9} \) 10. **Expression:** \( \frac{4}{(2x + 1)^2} - \frac{x + 1}{2x + 1} \) **Simplified Result:** \( \frac{3 - 2x^2 - 3x}{4x^2 + 4x + 1} \) 11. **Expression:** \( \frac{2}{2x} + \frac{7x + 1}{4x^2y} - \frac{5xy}{4} + 1 \) **Simplified Result:** \( \frac{4xy + 7x + 1 - 5x^3y^2 + 4x^2y}{4yx^2} \) 12. **Expression:** \( \frac{x - 3}{3} - \frac{x - 2}{2} + \frac{x + 1}{6} \) **Simplified Result:** \( \frac{1}{6} \) (or \( 0.1\dot{6} \)) 13. **Expression:** \( x - \frac{2x}{3x - 2} \) **Simplified Result:** \( \frac{3x^2 - 4x}{3x - 2} \) If you need further assistance or explanations for any specific step, feel free to ask!

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

Let's have some fun simplifying those expressions step by step! For the first one, \(\frac{2x}{3} + \frac{1}{6}\), the least common denominator (LCD) is 6. Rewriting the first term gives us \(\frac{4x}{6} + \frac{1}{6} = \frac{4x + 1}{6}\). For the second expression, \(\frac{7}{6x} - \frac{2}{9y} + \frac{1}{3x^2}\), the LCD is \(18xy\). Rewriting each portion gives us \(\frac{21y}{18xy} - \frac{4x}{18xy} + \frac{6}{18xy}\), leading to \(\frac{21y - 4x + 6}{18xy}\). Keep this spirit of fun while diving through each expression; you'll be a pro in no time! If you need any specifics on the others, feel free to ask!

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy