Answer
Here are the simplified results for each expression:
1. \( \frac{2x}{3} + \frac{1}{6} = \frac{4x + 1}{6} \)
2. \( \frac{7}{6x} - \frac{2}{9y} + \frac{1}{3x^2} = \frac{21yx - 4x^2 + 6y}{18yx^2} \)
3. \( \frac{3}{x} + \frac{2}{x^2} = \frac{3x + 2}{x^2} \)
4. \( 1 + 2 - \frac{2a - 1}{2} = \frac{7 - 2a}{2} \)
5. \( \frac{5}{6xy} - \frac{x + 2}{2x} = \frac{5 - 3xy - 6y}{6xy} \)
6. \( \frac{5}{2x} - \frac{x + 1}{x - 2} = \frac{3x - 10 - 2x^2}{2x^2 - 4x} \)
7. \( \frac{2}{x} + \frac{5}{x + 1} = \frac{7x + 2}{x^2 + x} \)
8. \( \frac{x + 2}{x^2 + 2} - \frac{6}{x + 2} = \frac{-5x^2 + 4x - 8}{x^3 + 2x^2 + 2x + 4} \)
9. \( \frac{x - 3}{x + 3} - \frac{x + 3}{x - 3} = -\frac{12x}{x^2 - 9} \)
10. \( \frac{4}{(2x + 1)^2} - \frac{x + 1}{2x + 1} = \frac{3 - 2x^2 - 3x}{4x^2 + 4x + 1} \)
11. \( \frac{2}{2x} + \frac{7x + 1}{4x^2y} - \frac{5xy}{4} + 1 = \frac{4xy + 7x + 1 - 5x^3y^2 + 4x^2y}{4yx^2} \)
12. \( \frac{x - 3}{3} - \frac{x - 2}{2} + \frac{x + 1}{6} = \frac{1}{6} \)
13. \( x - \frac{2x}{3x - 2} = \frac{3x^2 - 4x}{3x - 2} \)
If you need further assistance or explanations for any specific step, feel free to ask!
Solution
Simplify the expression by following steps:
- step0: Solution:
\(\frac{3}{x}+\frac{2}{x^{2}}\)
- step1: Reduce fractions to a common denominator:
\(\frac{3x}{x\times x}+\frac{2}{x^{2}}\)
- step2: Multiply the terms:
\(\frac{3x}{x^{2}}+\frac{2}{x^{2}}\)
- step3: Transform the expression:
\(\frac{3x+2}{x^{2}}\)
Calculate or simplify the expression \( 5/(2*x) - (x + 1)/(x - 2) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{5}{2x}-\frac{\left(x+1\right)}{\left(x-2\right)}\)
- step1: Remove the parentheses:
\(\frac{5}{2x}-\frac{x+1}{x-2}\)
- step2: Reduce fractions to a common denominator:
\(\frac{5\left(x-2\right)}{2x\left(x-2\right)}-\frac{\left(x+1\right)\times 2x}{\left(x-2\right)\times 2x}\)
- step3: Reorder the terms:
\(\frac{5\left(x-2\right)}{2x\left(x-2\right)}-\frac{\left(x+1\right)\times 2x}{2\left(x-2\right)x}\)
- step4: Rewrite the expression:
\(\frac{5\left(x-2\right)}{2x\left(x-2\right)}-\frac{\left(x+1\right)\times 2x}{2x\left(x-2\right)}\)
- step5: Transform the expression:
\(\frac{5\left(x-2\right)-\left(x+1\right)\times 2x}{2x\left(x-2\right)}\)
- step6: Multiply the terms:
\(\frac{5x-10-\left(x+1\right)\times 2x}{2x\left(x-2\right)}\)
- step7: Multiply the terms:
\(\frac{5x-10-\left(2x^{2}+2x\right)}{2x\left(x-2\right)}\)
- step8: Subtract the terms:
\(\frac{3x-10-2x^{2}}{2x\left(x-2\right)}\)
- step9: Multiply the terms:
\(\frac{3x-10-2x^{2}}{2x^{2}-4x}\)
Calculate or simplify the expression \( x - (2*x)/(3*x - 2) \).
Simplify the expression by following steps:
- step0: Solution:
\(x-\frac{2x}{\left(3x-2\right)}\)
- step1: Remove the parentheses:
\(x-\frac{2x}{3x-2}\)
- step2: Reduce fractions to a common denominator:
\(\frac{x\left(3x-2\right)}{3x-2}-\frac{2x}{3x-2}\)
- step3: Transform the expression:
\(\frac{x\left(3x-2\right)-2x}{3x-2}\)
- step4: Multiply the terms:
\(\frac{3x^{2}-2x-2x}{3x-2}\)
- step5: Subtract the terms:
\(\frac{3x^{2}-4x}{3x-2}\)
Calculate or simplify the expression \( 2/x + 5/(x + 1) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{2}{x}+\frac{5}{\left(x+1\right)}\)
- step1: Remove the parentheses:
\(\frac{2}{x}+\frac{5}{x+1}\)
- step2: Reduce fractions to a common denominator:
\(\frac{2\left(x+1\right)}{x\left(x+1\right)}+\frac{5x}{\left(x+1\right)x}\)
- step3: Rewrite the expression:
\(\frac{2\left(x+1\right)}{x\left(x+1\right)}+\frac{5x}{x\left(x+1\right)}\)
- step4: Transform the expression:
\(\frac{2\left(x+1\right)+5x}{x\left(x+1\right)}\)
- step5: Multiply the terms:
\(\frac{2x+2+5x}{x\left(x+1\right)}\)
- step6: Add the terms:
\(\frac{7x+2}{x\left(x+1\right)}\)
- step7: Multiply the terms:
\(\frac{7x+2}{x^{2}+x}\)
Calculate or simplify the expression \( (x - 3)/(x + 3) - (x + 3)/(x - 3) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(x-3\right)}{\left(x+3\right)}-\frac{\left(x+3\right)}{\left(x-3\right)}\)
- step1: Remove the parentheses:
\(\frac{x-3}{x+3}-\frac{x+3}{x-3}\)
- step2: Reduce fractions to a common denominator:
\(\frac{\left(x-3\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\frac{\left(x+3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)
- step3: Rewrite the expression:
\(\frac{\left(x-3\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\frac{\left(x+3\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}\)
- step4: Transform the expression:
\(\frac{\left(x-3\right)\left(x-3\right)-\left(x+3\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}\)
- step5: Multiply the terms:
\(\frac{x^{2}-6x+9-\left(x+3\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}\)
- step6: Multiply the terms:
\(\frac{x^{2}-6x+9-\left(x^{2}+6x+9\right)}{\left(x+3\right)\left(x-3\right)}\)
- step7: Calculate:
\(\frac{-12x}{\left(x+3\right)\left(x-3\right)}\)
- step8: Rewrite the fraction:
\(-\frac{12x}{\left(x+3\right)\left(x-3\right)}\)
- step9: Multiply the terms:
\(-\frac{12x}{x^{2}-9}\)
Calculate or simplify the expression \( (x + 2)/(x^2 + 2) - 6/(x + 2) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(x+2\right)}{\left(x^{2}+2\right)}-\frac{6}{\left(x+2\right)}\)
- step1: Remove the parentheses:
\(\frac{x+2}{x^{2}+2}-\frac{6}{x+2}\)
- step2: Reduce fractions to a common denominator:
\(\frac{\left(x+2\right)\left(x+2\right)}{\left(x^{2}+2\right)\left(x+2\right)}-\frac{6\left(x^{2}+2\right)}{\left(x+2\right)\left(x^{2}+2\right)}\)
- step3: Rewrite the expression:
\(\frac{\left(x+2\right)\left(x+2\right)}{\left(x^{2}+2\right)\left(x+2\right)}-\frac{6\left(x^{2}+2\right)}{\left(x^{2}+2\right)\left(x+2\right)}\)
- step4: Transform the expression:
\(\frac{\left(x+2\right)\left(x+2\right)-6\left(x^{2}+2\right)}{\left(x^{2}+2\right)\left(x+2\right)}\)
- step5: Multiply the terms:
\(\frac{x^{2}+4x+4-6\left(x^{2}+2\right)}{\left(x^{2}+2\right)\left(x+2\right)}\)
- step6: Multiply the terms:
\(\frac{x^{2}+4x+4-\left(6x^{2}+12\right)}{\left(x^{2}+2\right)\left(x+2\right)}\)
- step7: Calculate:
\(\frac{-5x^{2}+4x-8}{\left(x^{2}+2\right)\left(x+2\right)}\)
- step8: Multiply the terms:
\(\frac{-5x^{2}+4x-8}{x^{3}+2x^{2}+2x+4}\)
Calculate or simplify the expression \( 2/(2*x) + (7*x + 1)/(4*x^2*y) - (5*x*y)/4 + 1 \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{2}{2x}+\frac{\left(7x+1\right)}{4x^{2}y}-\frac{5xy}{4}+1\)
- step1: Remove the parentheses:
\(\frac{2}{2x}+\frac{7x+1}{4x^{2}y}-\frac{5xy}{4}+1\)
- step2: Calculate:
\(\frac{1}{x}+\frac{7x+1}{4x^{2}y}-\frac{5xy}{4}+1\)
- step3: Reduce fractions to a common denominator:
\(\frac{4xy}{x\times 4xy}+\frac{7x+1}{4x^{2}y}-\frac{5xyxyx}{4xyx}+\frac{4xyx}{4xyx}\)
- step4: Reorder the terms:
\(\frac{4xy}{4x\times xy}+\frac{7x+1}{4x^{2}y}-\frac{5xyxyx}{4xyx}+\frac{4xyx}{4xyx}\)
- step5: Multiply the terms:
\(\frac{4xy}{4x^{2}y}+\frac{7x+1}{4x^{2}y}-\frac{5xyxyx}{4xyx}+\frac{4xyx}{4xyx}\)
- step6: Multiply the terms:
\(\frac{4xy}{4x^{2}y}+\frac{7x+1}{4x^{2}y}-\frac{5xyxyx}{4x^{2}y}+\frac{4xyx}{4xyx}\)
- step7: Multiply the terms:
\(\frac{4xy}{4x^{2}y}+\frac{7x+1}{4x^{2}y}-\frac{5xyxyx}{4x^{2}y}+\frac{4xyx}{4x^{2}y}\)
- step8: Transform the expression:
\(\frac{4xy+7x+1-5xyxyx+4xyx}{4x^{2}y}\)
- step9: Multiply the terms:
\(\frac{4xy+7x+1-5x^{3}y^{2}+4xyx}{4x^{2}y}\)
- step10: Multiply the terms:
\(\frac{4xy+7x+1-5x^{3}y^{2}+4x^{2}y}{4x^{2}y}\)
- step11: Simplify:
\(\frac{4xy+7x+1-5x^{3}y^{2}+4x^{2}y}{4yx^{2}}\)
Calculate or simplify the expression \( (2*x)/3 + 1/6 \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{2x}{3}+\frac{1}{6}\)
- step1: Reduce fractions to a common denominator:
\(\frac{2x\times 2}{3\times 2}+\frac{1}{6}\)
- step2: Multiply the numbers:
\(\frac{2x\times 2}{6}+\frac{1}{6}\)
- step3: Transform the expression:
\(\frac{2x\times 2+1}{6}\)
- step4: Multiply the terms:
\(\frac{4x+1}{6}\)
Calculate or simplify the expression \( 4/((2*x + 1)^2) - (x + 1)/(2*x + 1) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{4}{\left(2x+1\right)^{2}}-\frac{\left(x+1\right)}{\left(2x+1\right)}\)
- step1: Remove the parentheses:
\(\frac{4}{\left(2x+1\right)^{2}}-\frac{x+1}{2x+1}\)
- step2: Reduce fractions to a common denominator:
\(\frac{4}{\left(2x+1\right)^{2}}-\frac{\left(x+1\right)\left(2x+1\right)}{\left(2x+1\right)\left(2x+1\right)}\)
- step3: Multiply:
\(\frac{4}{\left(2x+1\right)^{2}}-\frac{\left(x+1\right)\left(2x+1\right)}{\left(2x+1\right)^{2}}\)
- step4: Transform the expression:
\(\frac{4-\left(x+1\right)\left(2x+1\right)}{\left(2x+1\right)^{2}}\)
- step5: Multiply the terms:
\(\frac{4-\left(2x^{2}+3x+1\right)}{\left(2x+1\right)^{2}}\)
- step6: Subtract the terms:
\(\frac{3-2x^{2}-3x}{\left(2x+1\right)^{2}}\)
- step7: Calculate:
\(\frac{3-2x^{2}-3x}{4x^{2}+4x+1}\)
Calculate or simplify the expression \( 7/(6*x) - 2/(9*y) + 1/(3*x^2) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{7}{6x}-\frac{2}{9y}+\frac{1}{3x^{2}}\)
- step1: Reduce fractions to a common denominator:
\(\frac{7\times 3yx}{6x\times 3yx}-\frac{2\times 2x\times x}{9y\times 2x\times x}+\frac{2\times 3y}{3x^{2}\times 2\times 3y}\)
- step2: Multiply the numbers:
\(\frac{7\times 3yx}{18xyx}-\frac{2\times 2x\times x}{9y\times 2x\times x}+\frac{2\times 3y}{3x^{2}\times 2\times 3y}\)
- step3: Multiply the numbers:
\(\frac{7\times 3yx}{18xyx}-\frac{2\times 2x\times x}{18yx\times x}+\frac{2\times 3y}{3x^{2}\times 2\times 3y}\)
- step4: Multiply the terms:
\(\frac{7\times 3yx}{18xyx}-\frac{2\times 2x\times x}{18yx\times x}+\frac{2\times 3y}{18x^{2}y}\)
- step5: Multiply the terms:
\(\frac{7\times 3yx}{18x^{2}y}-\frac{2\times 2x\times x}{18yx\times x}+\frac{2\times 3y}{18x^{2}y}\)
- step6: Multiply the terms:
\(\frac{7\times 3yx}{18x^{2}y}-\frac{2\times 2x\times x}{18yx^{2}}+\frac{2\times 3y}{18x^{2}y}\)
- step7: Rewrite the expression:
\(\frac{7\times 3yx}{18x^{2}y}-\frac{2\times 2x\times x}{18x^{2}y}+\frac{2\times 3y}{18x^{2}y}\)
- step8: Transform the expression:
\(\frac{7\times 3yx-2\times 2x\times x+2\times 3y}{18x^{2}y}\)
- step9: Multiply the terms:
\(\frac{21yx-2\times 2x\times x+2\times 3y}{18x^{2}y}\)
- step10: Multiply the terms:
\(\frac{21yx-4x^{2}+2\times 3y}{18x^{2}y}\)
- step11: Multiply the terms:
\(\frac{21yx-4x^{2}+6y}{18x^{2}y}\)
- step12: Simplify:
\(\frac{21yx-4x^{2}+6y}{18yx^{2}}\)
Calculate or simplify the expression \( 1 + 2 - (2*a - 1)/2 \).
Simplify the expression by following steps:
- step0: Solution:
\(1+2-\frac{\left(2a-1\right)}{2}\)
- step1: Remove the parentheses:
\(1+2-\frac{2a-1}{2}\)
- step2: Add the numbers:
\(3-\frac{2a-1}{2}\)
- step3: Reduce fractions to a common denominator:
\(\frac{3\times 2}{2}-\frac{2a-1}{2}\)
- step4: Transform the expression:
\(\frac{3\times 2-\left(2a-1\right)}{2}\)
- step5: Multiply the numbers:
\(\frac{6-\left(2a-1\right)}{2}\)
- step6: Subtract the terms:
\(\frac{7-2a}{2}\)
Calculate or simplify the expression \( 5/(6*x*y) - (x + 2)/(2*x) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{5}{6xy}-\frac{\left(x+2\right)}{2x}\)
- step1: Remove the parentheses:
\(\frac{5}{6xy}-\frac{x+2}{2x}\)
- step2: Reduce fractions to a common denominator:
\(\frac{5}{6xy}-\frac{\left(x+2\right)\times 3y}{2x\times 3y}\)
- step3: Multiply the numbers:
\(\frac{5}{6xy}-\frac{\left(x+2\right)\times 3y}{6xy}\)
- step4: Transform the expression:
\(\frac{5-\left(x+2\right)\times 3y}{6xy}\)
- step5: Multiply the terms:
\(\frac{5-\left(3xy+6y\right)}{6xy}\)
- step6: Remove the parentheses:
\(\frac{5-3xy-6y}{6xy}\)
Calculate or simplify the expression \( (x - 3)/3 - (x - 2)/2 + (x + 1)/6 \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(x-3\right)}{3}-\frac{\left(x-2\right)}{2}+\frac{\left(x+1\right)}{6}\)
- step1: Remove the parentheses:
\(\frac{x-3}{3}-\frac{x-2}{2}+\frac{x+1}{6}\)
- step2: Reduce fractions to a common denominator:
\(\frac{\left(x-3\right)\times 2}{3\times 2}-\frac{\left(x-2\right)\times 3}{2\times 3}+\frac{x+1}{6}\)
- step3: Multiply the numbers:
\(\frac{\left(x-3\right)\times 2}{6}-\frac{\left(x-2\right)\times 3}{2\times 3}+\frac{x+1}{6}\)
- step4: Multiply the numbers:
\(\frac{\left(x-3\right)\times 2}{6}-\frac{\left(x-2\right)\times 3}{6}+\frac{x+1}{6}\)
- step5: Transform the expression:
\(\frac{\left(x-3\right)\times 2-\left(x-2\right)\times 3+x+1}{6}\)
- step6: Multiply the terms:
\(\frac{2x-6-\left(x-2\right)\times 3+x+1}{6}\)
- step7: Multiply the terms:
\(\frac{2x-6-\left(3x-6\right)+x+1}{6}\)
- step8: Calculate:
\(\frac{1}{6}\)
Here are the simplified results for each expression:
1. **Expression:** \( \frac{2x}{3} + \frac{1}{6} \)
**Simplified Result:** \( \frac{4x + 1}{6} \)
2. **Expression:** \( \frac{7}{6x} - \frac{2}{9y} + \frac{1}{3x^2} \)
**Simplified Result:** \( \frac{21yx - 4x^2 + 6y}{18yx^2} \)
3. **Expression:** \( \frac{3}{x} + \frac{2}{x^2} \)
**Simplified Result:** \( \frac{3x + 2}{x^2} \)
4. **Expression:** \( 1 + 2 - \frac{2a - 1}{2} \)
**Simplified Result:** \( \frac{7 - 2a}{2} \)
5. **Expression:** \( \frac{5}{6xy} - \frac{x + 2}{2x} \)
**Simplified Result:** \( \frac{5 - 3xy - 6y}{6xy} \)
6. **Expression:** \( \frac{5}{2x} - \frac{x + 1}{x - 2} \)
**Simplified Result:** \( \frac{3x - 10 - 2x^2}{2x^2 - 4x} \)
7. **Expression:** \( \frac{2}{x} + \frac{5}{x + 1} \)
**Simplified Result:** \( \frac{7x + 2}{x^2 + x} \)
8. **Expression:** \( \frac{x + 2}{x^2 + 2} - \frac{6}{x + 2} \)
**Simplified Result:** \( \frac{-5x^2 + 4x - 8}{x^3 + 2x^2 + 2x + 4} \)
9. **Expression:** \( \frac{x - 3}{x + 3} - \frac{x + 3}{x - 3} \)
**Simplified Result:** \( -\frac{12x}{x^2 - 9} \)
10. **Expression:** \( \frac{4}{(2x + 1)^2} - \frac{x + 1}{2x + 1} \)
**Simplified Result:** \( \frac{3 - 2x^2 - 3x}{4x^2 + 4x + 1} \)
11. **Expression:** \( \frac{2}{2x} + \frac{7x + 1}{4x^2y} - \frac{5xy}{4} + 1 \)
**Simplified Result:** \( \frac{4xy + 7x + 1 - 5x^3y^2 + 4x^2y}{4yx^2} \)
12. **Expression:** \( \frac{x - 3}{3} - \frac{x - 2}{2} + \frac{x + 1}{6} \)
**Simplified Result:** \( \frac{1}{6} \) (or \( 0.1\dot{6} \))
13. **Expression:** \( x - \frac{2x}{3x - 2} \)
**Simplified Result:** \( \frac{3x^2 - 4x}{3x - 2} \)
If you need further assistance or explanations for any specific step, feel free to ask!
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution