Question
upstudy study bank question image url

3.3 Prove the identity: \( \frac{(\sin \theta-\cos \theta)^{2}}{1-\sin ^{2} \theta}=\frac{1}{\cos ^{2} \theta}-2 \tan \theta \)

Ask by Nunez Chadwick. in South Africa
Mar 09,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Both sides of the equation simplify to \( \frac{1 - 2\sin \theta \cos \theta}{\cos^{2} \theta} \), proving the identity.

Solution

Simplify the expression by following steps: - step0: Solution: \(\frac{1}{\cos\left(\theta ^{2}\right)}-2\tan\left(\theta \right)\) - step1: Transform the expression: \(\sec\left(\theta ^{2}\right)-2\tan\left(\theta \right)\) Calculate or simplify the expression \( (\sin(\theta) - \cos(\theta))^2 / (1 - \sin(\theta)^2) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(\sin\left(\theta \right)-\cos\left(\theta \right)\right)^{2}}{\left(1-\sin\left(\theta ^{2}\right)\right)}\) - step1: Remove the parentheses: \(\frac{\left(\sin\left(\theta \right)-\cos\left(\theta \right)\right)^{2}}{1-\sin\left(\theta ^{2}\right)}\) - step2: Calculate: \(\frac{\sin^{2}\left(\theta \right)-2\sin\left(\theta \right)\cos\left(\theta \right)+\cos^{2}\left(\theta \right)}{1-\sin\left(\theta ^{2}\right)}\) To prove the identity \[ \frac{(\sin \theta - \cos \theta)^{2}}{1 - \sin^{2} \theta} = \frac{1}{\cos^{2} \theta} - 2 \tan \theta, \] we will simplify both sides and check if they are equal. ### Step 1: Simplify the Left Side The left side is \[ \frac{(\sin \theta - \cos \theta)^{2}}{1 - \sin^{2} \theta}. \] Calculating the numerator: \[ (\sin \theta - \cos \theta)^{2} = \sin^{2} \theta - 2\sin \theta \cos \theta + \cos^{2} \theta. \] Using the Pythagorean identity, we know that \[ \sin^{2} \theta + \cos^{2} \theta = 1. \] Thus, the numerator simplifies to: \[ 1 - 2\sin \theta \cos \theta. \] Now, for the denominator: \[ 1 - \sin^{2} \theta = \cos^{2} \theta. \] Putting it all together, the left side becomes: \[ \frac{1 - 2\sin \theta \cos \theta}{\cos^{2} \theta}. \] ### Step 2: Simplify the Right Side The right side is \[ \frac{1}{\cos^{2} \theta} - 2 \tan \theta. \] We know that \[ \tan \theta = \frac{\sin \theta}{\cos \theta}. \] Thus, \[ 2 \tan \theta = \frac{2\sin \theta}{\cos \theta}. \] Now, rewriting the right side: \[ \frac{1}{\cos^{2} \theta} - \frac{2\sin \theta}{\cos \theta} = \frac{1 - 2\sin \theta \cos \theta}{\cos^{2} \theta}. \] ### Step 3: Compare Both Sides Now we have: - Left Side: \(\frac{1 - 2\sin \theta \cos \theta}{\cos^{2} \theta}\) - Right Side: \(\frac{1 - 2\sin \theta \cos \theta}{\cos^{2} \theta}\) Since both sides are equal, we have proven the identity: \[ \frac{(\sin \theta - \cos \theta)^{2}}{1 - \sin^{2} \theta} = \frac{1}{\cos^{2} \theta} - 2 \tan \theta. \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

To prove the identity \[ \frac{(\sin \theta - \cos \theta)^{2}}{1 - \sin^{2} \theta} = \frac{1}{\cos^{2} \theta} - 2 \tan \theta, \] we start by simplifying both sides. ### Left-hand side (LHS): The denominator can be rewritten using the Pythagorean identity: \[ 1 - \sin^{2} \theta = \cos^{2} \theta. \] Thus, the left-hand side becomes: \[ \frac{(\sin \theta - \cos \theta)^{2}}{\cos^{2} \theta}. \] Now, expanding \((\sin \theta - \cos \theta)^{2}\): \[ (\sin \theta - \cos \theta)^{2} = \sin^{2} \theta - 2 \sin \theta \cos \theta + \cos^{2} \theta = 1 - 2 \sin \theta \cos \theta. \] Now, substituting back into the LHS gives: \[ \frac{1 - 2 \sin \theta \cos \theta}{\cos^{2} \theta} = \frac{1}{\cos^{2} \theta} - \frac{2 \sin \theta \cos \theta}{\cos^{2} \theta}. \] Noting that \(\frac{\sin \theta}{\cos \theta} = \tan \theta\), we find: \[ \frac{1}{\cos^{2} \theta} - 2 \tan \theta. \] ### Right-hand side (RHS): The right-hand side is already in a suitable form: \[ \frac{1}{\cos^{2} \theta} - 2 \tan \theta. \] ### Conclusion: Since both sides are equal, we have shown that: \[ \frac{(\sin \theta - \cos \theta)^{2}}{1 - \sin^{2} \theta} = \frac{1}{\cos^{2} \theta} - 2 \tan \theta. \] Thus, the identity is proved.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy