Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


The Deep Dive
To expand \( (3x + 2y)^{3} \), we can use the binomial theorem, which states that \( (a + b)^{n} = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k} \). Here, \( a = 3x \), \( b = 2y \), and \( n = 3 \). Expanding it gives: \[ (3x + 2y)^{3} = \binom{3}{0}(3x)^{3}(2y)^{0} + \binom{3}{1}(3x)^{2}(2y)^{1} + \binom{3}{2}(3x)^{1}(2y)^{2} + \binom{3}{3}(3x)^{0}(2y)^{3} \] Calculating each term, we find: 1. \( \binom{3}{0}(3x)^{3} = 1 \cdot 27x^{3} = 27x^{3} \) 2. \( \binom{3}{1}(3x)^{2}(2y) = 3 \cdot 9x^{2}(2y) = 54x^{2}y \) 3. \( \binom{3}{2}(3x)(2y)^{2} = 3 \cdot 3x(4y^{2}) = 36xy^{2} \) 4. \( \binom{3}{3}(2y)^{3} = 1 \cdot 8y^{3} = 8y^{3} \) Now combining all the terms together: \[ (3x + 2y)^{3} = 27x^{3} + 54x^{2}y + 36xy^{2} + 8y^{3} \]