Question
upstudy study bank question image url

13 a) Решите уравнение \[ \cos \left(\frac{3 \pi}{2}+2 x\right)=\cos x \] б) Укажите корни этого уравнения, принадтежащие отрезку \( \left[\frac{5 \pi}{2} ; 4 \pi\right] \).

Ask by Higgins Norris. in Russia
Feb 21,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

### a) Решение уравнения Уравнение: \[ \cos \left(\frac{3 \pi}{2} + 2x\right) = \cos x \] Корни: \[ x = \frac{\pi}{6} + 2k\pi, \quad x = \frac{\pi}{2} + k\pi, \quad x = \frac{5\pi}{6} + 2k\pi, \quad k \in \mathbb{Z} \] ### б) Корни на отрезке \(\left[\frac{5\pi}{2}; 4\pi\right]\) Корни: \[ x = \frac{\pi}{2} + 2\pi, \quad x = \frac{5\pi}{6} + 2\pi, \quad x = \frac{5\pi}{2}, \quad x = \frac{7\pi}{2} \]

Solution

Solve the equation by following steps: - step0: Solve for \(x\): \(\cos\left(\frac{3\pi }{2}+2x\right)=\cos\left(x\right)\) - step1: Rewrite the expression: \(\sin\left(2x\right)=\cos\left(x\right)\) - step2: Rewrite the expression: \(2\sin\left(x\right)\cos\left(x\right)=\cos\left(x\right)\) - step3: Move the expression to the left side: \(2\sin\left(x\right)\cos\left(x\right)-\cos\left(x\right)=0\) - step4: Factor the expression: \(\cos\left(x\right)\left(2\sin\left(x\right)-1\right)=0\) - step5: Separate into possible cases: \(\begin{align}&\cos\left(x\right)=0\\&2\sin\left(x\right)-1=0\end{align}\) - step6: Solve the equation: \(\begin{align}&x=\frac{\pi }{2}+k\pi ,k \in \mathbb{Z}\\&x=\left\{ \begin{array}{l}\frac{\pi }{6}+2k\pi \\\frac{5\pi }{6}+2k\pi \end{array}\right.,k \in \mathbb{Z}\end{align}\) - step7: Find the union: \(x=\left\{ \begin{array}{l}\frac{\pi }{6}+2k\pi \\\frac{\pi }{2}+k\pi \\\frac{5\pi }{6}+2k\pi \end{array}\right.,k \in \mathbb{Z}\) Solve the equation \( x=\frac{\pi }{6}+2k\pi \). Solve the equation by following steps: - step0: Solve for \(k\): \(x=\frac{\pi }{6}+2k\pi \) - step1: Multiply the numbers: \(x=\frac{\pi }{6}+2\pi k\) - step2: Swap the sides: \(\frac{\pi }{6}+2\pi k=x\) - step3: Move the constant to the right side: \(2\pi k=x-\frac{\pi }{6}\) - step4: Subtract the terms: \(2\pi k=\frac{6x-\pi }{6}\) - step5: Multiply by the reciprocal: \(2\pi k\times \frac{1}{2\pi }=\frac{6x-\pi }{6}\times \frac{1}{2\pi }\) - step6: Multiply: \(k=\frac{6x-\pi }{12\pi }\) Solve the equation \( x=\frac{5\pi }{6}+2k\pi \). Solve the equation by following steps: - step0: Solve for \(k\): \(x=\frac{5\pi }{6}+2k\pi \) - step1: Multiply the numbers: \(x=\frac{5\pi }{6}+2\pi k\) - step2: Swap the sides: \(\frac{5\pi }{6}+2\pi k=x\) - step3: Move the constant to the right side: \(2\pi k=x-\frac{5\pi }{6}\) - step4: Subtract the terms: \(2\pi k=\frac{6x-5\pi }{6}\) - step5: Multiply by the reciprocal: \(2\pi k\times \frac{1}{2\pi }=\frac{6x-5\pi }{6}\times \frac{1}{2\pi }\) - step6: Multiply: \(k=\frac{6x-5\pi }{12\pi }\) Solve the equation \( x=\frac{\pi }{2}+k\pi \). Solve the equation by following steps: - step0: Solve for \(k\): \(x=\frac{\pi }{2}+k\pi \) - step1: Reorder the terms: \(x=\frac{\pi }{2}+\pi k\) - step2: Swap the sides: \(\frac{\pi }{2}+\pi k=x\) - step3: Move the constant to the right side: \(\pi k=x-\frac{\pi }{2}\) - step4: Subtract the terms: \(\pi k=\frac{2x-\pi }{2}\) - step5: Multiply by the reciprocal: \(\pi k\times \frac{1}{\pi }=\frac{2x-\pi }{2}\times \frac{1}{\pi }\) - step6: Multiply: \(k=\frac{2x-\pi }{2\pi }\) Решим уравнение: ### a) Решение уравнения Дано уравнение: \[ \cos \left(\frac{3 \pi}{2}+2 x\right)=\cos x \] Согласно свойству косинуса, если \(\cos A = \cos B\), то: \[ A = 2k\pi \pm B, \quad k \in \mathbb{Z} \] Подставим \(A = \frac{3\pi}{2} + 2x\) и \(B = x\): 1. \(\frac{3\pi}{2} + 2x = 2k\pi + x\) 2. \(\frac{3\pi}{2} + 2x = 2k\pi - x\) Решим каждое из этих уравнений. #### Уравнение 1: \[ \frac{3\pi}{2} + 2x = 2k\pi + x \] Переносим \(x\) влево: \[ \frac{3\pi}{2} + x = 2k\pi \] \[ x = 2k\pi - \frac{3\pi}{2} \] #### Уравнение 2: \[ \frac{3\pi}{2} + 2x = 2k\pi - x \] Переносим \(x\) влево: \[ \frac{3\pi}{2} + 3x = 2k\pi \] \[ 3x = 2k\pi - \frac{3\pi}{2} \] \[ x = \frac{2k\pi - \frac{3\pi}{2}}{3} \] Таким образом, корни уравнения: \[ x = \left\{ \frac{\pi}{6} + 2k\pi, \frac{\pi}{2} + k\pi, \frac{5\pi}{6} + 2k\pi \right\}, \quad k \in \mathbb{Z} \] ### б) Корни на отрезке \(\left[\frac{5 \pi}{2}; 4 \pi\right]\) Теперь найдем корни, принадлежащие отрезку \(\left[\frac{5 \pi}{2}; 4 \pi\right]\). 1. **Для \(x = \frac{\pi}{6} + 2k\pi\)**: \[ \frac{\pi}{6} + 2k\pi \in \left[\frac{5\pi}{2}; 4\pi\right] \] Решим для \(k\). 2. **Для \(x = \frac{\pi}{2} + k\pi\)**: \[ \frac{\pi}{2} + k\pi \in \left[\frac{5\pi}{2}; 4\pi\right] \] Решим для \(k\). 3. **Для \(x = \frac{5\pi}{6} + 2k\pi\)**: \[ \frac{5\pi}{6} + 2k\pi \in \left[\frac{5\pi}{2}; 4\pi\right] \] Решим для \(k\). Теперь найдем значения \(k\) для каждого случая. ### 1. Для \(x = \frac{\pi}{6} + 2k\pi\): \[ \frac{5\pi}{2} \leq \frac{\pi}{6} + 2k\pi \leq 4\pi \] ### 2. Для \(x = \frac{\pi}{2} + k\pi\): \[ \frac{5\pi}{2} \leq \frac{\pi}{2} + k\pi \leq 4\pi \] ### 3. Для \(x = \frac{5\pi}{6} + 2k\pi\): \[ \frac{5\pi}{2} \leq \frac{5\pi}{6} + 2k\pi \leq 4\pi \] Теперь решим каждое из этих неравенств для \(k\). Поскольку возникли ошибки при попытке решить неравенства, я выполню их вручную. ### Решение неравенств 1. **Для \(x = \frac{\pi}{6} + 2k\pi\)**: \[ 2k\pi \geq \frac{5\pi}{2} - \frac{\pi}{6} \implies 2k\pi \geq \frac{15\pi}{6} - \frac{\pi}{6} = \frac{14\pi}{6} \implies k \geq \frac{7}{6} \] \[ 2k\pi \leq 4\pi - \frac{\pi}{6} \implies 2k\pi \leq \frac{24\pi}{6} - \frac{\pi}{6} = \frac{23\pi}{6} \implies k \leq \frac{23}{12} \] Значит, \(k = 1\). 2. **Для \(x = \frac{\pi}{2} + k\pi\)**: \[ k\pi \geq \frac{5\pi}{2} - \frac{\pi}{2} \implies k\pi \geq 2\pi \implies k \geq 2 \] \[ k\pi \leq 4\pi - \frac{\pi}{2} \implies k\pi \leq \frac{8\pi}{2} - \frac{\pi}{2} = \frac{7\pi}{2} \implies k \leq 3 \] Значит, \(k = 2\) или \(k = 3\). 3. **Для \(x = \frac{5\pi}{6} + 2k\pi\)**: \[ 2k\pi \geq \frac{5\pi}{2} - \frac{5\pi}{6} \implies 2k\pi \geq \frac{15\pi}{6} - \frac{5\pi}{6} = \frac{10\pi}{6} \implies k \geq \frac{5}{6} \] \[ 2k\pi \leq 4\pi - \frac{5\pi}{6} \implies 2k\pi \leq \frac{24\pi}{6}

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

Решим уравнение \(\cos \left(\frac{3 \pi}{2}+2 x\right)=\cos x\). Сначала воспользуемся формулой для косинуса суммы: \[ \cos \left(\frac{3 \pi}{2} + 2x\right) = -\sin(2x). \] Таким образом, уравнение превращается в: \[ -\sin(2x) = \cos x. \] Перепишем его следующим образом: \[ \sin(2x) + \cos x = 0. \] Используя тождество \(\sin(2x) = 2\sin x \cos x\), получаем: \[ 2\sin x \cos x + \cos x = 0. \] Факторизуем: \[ \cos x (2\sin x + 1) = 0. \] Таким образом, у нас два случая: 1) \(\cos x = 0 \Rightarrow x = \frac{\pi}{2} + k\pi\), где \(k \in \mathbb{Z}\). 2) \(2\sin x + 1 = 0 \Rightarrow \sin x = -\frac{1}{2} \Rightarrow x = \frac{7\pi}{6} + 2k\pi\) или \(x = \frac{11\pi}{6} + 2k\pi\). Теперь будем искать корни отрезка \(\left[\frac{5 \pi}{2}; 4 \pi\right]\). Для случая 1: \(\cos x = 0 \Rightarrow x = \frac{\pi}{2} + k\pi\) Для \(k = 2\): \(x = \frac{\pi}{2} + 2\pi = \frac{5\pi}{2}\). Для \(k = 3\): \(x = \frac{\pi}{2} + 3\pi = \frac{7\pi}{2}\). Для \(k = 4\): \(x = \frac{\pi}{2} + 4\pi = \frac{9\pi}{2}\). Корни: \(\frac{5\pi}{2}, \frac{7\pi}{2}\) (до \(4\pi\)). Для случая 2: \(\sin x = -\frac{1}{2}\). Корни: 1) \(x = \frac{7\pi}{6}\) (вне отрезка). 2) \(x = \frac{11\pi}{6}\) (вне отрезка). 3) Для \(k = 1\) \(x = \frac{7\pi}{6} + 2\pi = \frac{19\pi}{6}\). 4) Для \(k = 1\) \(x = \frac{11\pi}{6} + 2\pi = \frac{23\pi}{6}\). Таким образом, корни, принадлежащие отрезку \(\left[\frac{5 \pi}{2}; 4 \pi\right]\): - \(\frac{5\pi}{2}\), - \(\frac{7\pi}{2}\), - \(\frac{19\pi}{6}\), - \(\frac{23\pi}{6}\).

Related Questions

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy