Question
upstudy study bank question image url

c. \( \cot ^{2} \frac{\pi^{c}}{6}-2 \cos ^{2} \frac{\pi^{c}}{3}-\frac{3}{4} \sec ^{2} \frac{\pi^{c}}{4}-4 \sec ^{2} \frac{\pi^{c}}{6} \)

Ask by Tucker Marshall. in Nepal
Nov 12,2024

Upstudy AI Solution

Tutor-Verified Answer

Answer

The simplified expression is \(-\frac{13}{3}\).

Solution

To simplify the expression \[ \cot^2 \frac{\pi^c}{6} - 2 \cos^2 \frac{\pi^c}{3} - \frac{3}{4} \sec^2 \frac{\pi^c}{4} - 4 \sec^2 \frac{\pi^c}{6}, \] we will evaluate each term separately. 1. **Evaluate \( \cot^2 \frac{\pi^c}{6} \)**: \[ \cot \frac{\pi^c}{6} = \frac{\cos \frac{\pi^c}{6}}{\sin \frac{\pi^c}{6}}. \] Using the values: \[ \cos \frac{\pi^c}{6} = \frac{\sqrt{3}}{2}, \quad \sin \frac{\pi^c}{6} = \frac{1}{2}, \] we find: \[ \cot \frac{\pi^c}{6} = \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} = \sqrt{3}. \] Therefore, \[ \cot^2 \frac{\pi^c}{6} = 3. \] 2. **Evaluate \( -2 \cos^2 \frac{\pi^c}{3} \)**: \[ \cos \frac{\pi^c}{3} = \frac{1}{2}, \] so: \[ \cos^2 \frac{\pi^c}{3} = \left(\frac{1}{2}\right)^2 = \frac{1}{4}. \] Thus, \[ -2 \cos^2 \frac{\pi^c}{3} = -2 \cdot \frac{1}{4} = -\frac{1}{2}. \] 3. **Evaluate \( -\frac{3}{4} \sec^2 \frac{\pi^c}{4} \)**: \[ \sec \frac{\pi^c}{4} = \frac{1}{\cos \frac{\pi^c}{4}} = \frac{1}{\frac{\sqrt{2}}{2}} = \sqrt{2}, \] so: \[ \sec^2 \frac{\pi^c}{4} = 2. \] Therefore, \[ -\frac{3}{4} \sec^2 \frac{\pi^c}{4} = -\frac{3}{4} \cdot 2 = -\frac{3}{2}. \] 4. **Evaluate \( -4 \sec^2 \frac{\pi^c}{6} \)**: \[ \sec \frac{\pi^c}{6} = \frac{1}{\cos \frac{\pi^c}{6}} = \frac{1}{\frac{\sqrt{3}}{2}} = \frac{2}{\sqrt{3}}, \] so: \[ \sec^2 \frac{\pi^c}{6} = \left(\frac{2}{\sqrt{3}}\right)^2 = \frac{4}{3}. \] Therefore, \[ -4 \sec^2 \frac{\pi^c}{6} = -4 \cdot \frac{4}{3} = -\frac{16}{3}. \] Now, we can combine all the evaluated terms: \[ 3 - \frac{1}{2} - \frac{3}{2} - \frac{16}{3}. \] First, combine \( 3 - \frac{1}{2} - \frac{3}{2} \): \[ 3 - 2 = 1. \] Now, we have: \[ 1 - \frac{16}{3} = \frac{3}{3} - \frac{16}{3} = -\frac{13}{3}. \] Thus, the final result is: \[ \boxed{-\frac{13}{3}}. \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

Let's sprinkle some mathematical magic on this expression! The given expression is \( \cot ^{2} \frac{\pi^{c}}{6}-2 \cos ^{2} \frac{\pi^{c}}{3}-\frac{3}{4} \sec ^{2} \frac{\pi^{c}}{4}-4 \sec ^{2} \frac{\pi^{c}}{6} \). Substituting the respective trigonometric identities, we can simplify this expression depending on the specific value of \( c \). For instance, at \( c = 1 \), evaluating each term gives a mix of angles such as \( \frac{\pi}{6} \), \( \frac{\pi}{3} \), and \( \frac{\pi}{4} \). By calculating the exact values of cotangent, cosine, and secant for these angles, we can unravel the mysteries hidden within this expression. Embrace the challenge! Also, keep in mind that common trigonometric values are fun to memorize! Knowing that \( \cot \frac{\pi}{6} = \sqrt{3} \) and \( \sec \frac{\pi}{4} = \sqrt{2} \) can substantially make calculations smoother. Don't hesitate to play with values of \( c \) to see different outcomes, and who knows?! You might stumble upon fascinating patterns in trigonometry!

Related Questions

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy