Pregunta
upstudy study bank question image url

c. \( \cot ^{2} \frac{\pi^{c}}{6}-2 \cos ^{2} \frac{\pi^{c}}{3}-\frac{3}{4} \sec ^{2} \frac{\pi^{c}}{4}-4 \sec ^{2} \frac{\pi^{c}}{6} \)

Ask by Tucker Marshall. in Nepal
Nov 12,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The simplified expression is \(-\frac{13}{3}\).

Solución

To simplify the expression \[ \cot^2 \frac{\pi^c}{6} - 2 \cos^2 \frac{\pi^c}{3} - \frac{3}{4} \sec^2 \frac{\pi^c}{4} - 4 \sec^2 \frac{\pi^c}{6}, \] we will evaluate each term separately. 1. **Evaluate \( \cot^2 \frac{\pi^c}{6} \)**: \[ \cot \frac{\pi^c}{6} = \frac{\cos \frac{\pi^c}{6}}{\sin \frac{\pi^c}{6}}. \] Using the values: \[ \cos \frac{\pi^c}{6} = \frac{\sqrt{3}}{2}, \quad \sin \frac{\pi^c}{6} = \frac{1}{2}, \] we find: \[ \cot \frac{\pi^c}{6} = \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} = \sqrt{3}. \] Therefore, \[ \cot^2 \frac{\pi^c}{6} = 3. \] 2. **Evaluate \( -2 \cos^2 \frac{\pi^c}{3} \)**: \[ \cos \frac{\pi^c}{3} = \frac{1}{2}, \] so: \[ \cos^2 \frac{\pi^c}{3} = \left(\frac{1}{2}\right)^2 = \frac{1}{4}. \] Thus, \[ -2 \cos^2 \frac{\pi^c}{3} = -2 \cdot \frac{1}{4} = -\frac{1}{2}. \] 3. **Evaluate \( -\frac{3}{4} \sec^2 \frac{\pi^c}{4} \)**: \[ \sec \frac{\pi^c}{4} = \frac{1}{\cos \frac{\pi^c}{4}} = \frac{1}{\frac{\sqrt{2}}{2}} = \sqrt{2}, \] so: \[ \sec^2 \frac{\pi^c}{4} = 2. \] Therefore, \[ -\frac{3}{4} \sec^2 \frac{\pi^c}{4} = -\frac{3}{4} \cdot 2 = -\frac{3}{2}. \] 4. **Evaluate \( -4 \sec^2 \frac{\pi^c}{6} \)**: \[ \sec \frac{\pi^c}{6} = \frac{1}{\cos \frac{\pi^c}{6}} = \frac{1}{\frac{\sqrt{3}}{2}} = \frac{2}{\sqrt{3}}, \] so: \[ \sec^2 \frac{\pi^c}{6} = \left(\frac{2}{\sqrt{3}}\right)^2 = \frac{4}{3}. \] Therefore, \[ -4 \sec^2 \frac{\pi^c}{6} = -4 \cdot \frac{4}{3} = -\frac{16}{3}. \] Now, we can combine all the evaluated terms: \[ 3 - \frac{1}{2} - \frac{3}{2} - \frac{16}{3}. \] First, combine \( 3 - \frac{1}{2} - \frac{3}{2} \): \[ 3 - 2 = 1. \] Now, we have: \[ 1 - \frac{16}{3} = \frac{3}{3} - \frac{16}{3} = -\frac{13}{3}. \] Thus, the final result is: \[ \boxed{-\frac{13}{3}}. \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Let's sprinkle some mathematical magic on this expression! The given expression is \( \cot ^{2} \frac{\pi^{c}}{6}-2 \cos ^{2} \frac{\pi^{c}}{3}-\frac{3}{4} \sec ^{2} \frac{\pi^{c}}{4}-4 \sec ^{2} \frac{\pi^{c}}{6} \). Substituting the respective trigonometric identities, we can simplify this expression depending on the specific value of \( c \). For instance, at \( c = 1 \), evaluating each term gives a mix of angles such as \( \frac{\pi}{6} \), \( \frac{\pi}{3} \), and \( \frac{\pi}{4} \). By calculating the exact values of cotangent, cosine, and secant for these angles, we can unravel the mysteries hidden within this expression. Embrace the challenge! Also, keep in mind that common trigonometric values are fun to memorize! Knowing that \( \cot \frac{\pi}{6} = \sqrt{3} \) and \( \sec \frac{\pi}{4} = \sqrt{2} \) can substantially make calculations smoother. Don't hesitate to play with values of \( c \) to see different outcomes, and who knows?! You might stumble upon fascinating patterns in trigonometry!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad