Question
upstudy study bank question image url

\( J = \int _ { 0 } ^ { \frac { \pi } { 2 } } ( 1 + \sin x ) ^ { 2 } \cdot \cos x d x \)

Ask by Nichols Valdez. in Cambodia
Mar 15,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

\[ J = \frac{7}{3} \]

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Answered by UpStudy AI and reviewed by a Professional Tutor

Bonus Knowledge

To solve the integral \( J = \int _ { 0 } ^ { \frac { \pi } { 2 } } ( 1 + \sin x ) ^ { 2 } \cdot \cos x \, dx \), we can start by expanding the integrand: \[ (1 + \sin x)^2 = 1 + 2\sin x + \sin^2 x \] Thus, we can rewrite the integral as: \[ J = \int _ { 0 } ^ { \frac { \pi } { 2 } } (1 + 2\sin x + \sin^2 x) \cos x \, dx \] Now, split this into three separate integrals: \[ J = \int _ { 0 } ^ { \frac { \pi } { 2 } } \cos x \, dx + 2 \int _ { 0 } ^ { \frac { \pi } { 2 } } \sin x \cos x \, dx + \int _ { 0 } ^ { \frac { \pi } { 2 } } \sin^2 x \cos x \, dx \] 1. The first integral: \[ \int _ { 0 } ^ { \frac { \pi } { 2 } } \cos x \, dx = \left[ \sin x \right] _ { 0 } ^ { \frac { \pi } { 2 } } = 1 - 0 = 1 \] 2. The second integral can be simplified using the substitution \( u = \sin x \). Then, \( du = \cos x \, dx \): \[ \int _ { 0 } ^ { \frac { \pi } { 2 } } \sin x \cos x \, dx = \int _ { 0 } ^ { 1 } u \, du = \left[ \frac{u^2}{2} \right] _{0}^{1} = \frac{1}{2} \] Thus, \[ 2 \int _ { 0 } ^ { \frac { \pi } { 2 } } \sin x \cos x \, dx = 2 \cdot \frac{1}{2} = 1 \] 3. For the third integral, again using \( u = \sin x \): \[ \int _ { 0 } ^ { \frac { \pi } { 2 } } \sin^2 x \cos x \, dx = \int _ { 0 } ^ { 1 } u^2 \, du = \left[ \frac{u^3}{3} \right] _{0}^{1} = \frac{1}{3} \] Now, we combine all parts: \[ J = 1 + 1 + \frac{1}{3} = 2 + \frac{1}{3} = \frac{6}{3} + \frac{1}{3} = \frac{7}{3} \] Thus, the final answer is: \[ \boxed{\frac{7}{3}} \]

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy