Question
upstudy study bank question image url

Hitunglah nilai limit \( \lim \frac{4 x-\tan x}{x+\sin 2 x} \). A. -1 B. -1 C. \( \frac{1}{2} \) D. 1 E. 2

Ask by Harrington Gough. in Indonesia
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The limit is 1.

Solution

We are asked to calculate the limit as x approaches 0:   lim (4x – tan x) / (x + sin 2x). Step 1. Observe that directly substituting x = 0 gives an indeterminate form:   Numerator: 4(0) – tan 0 = 0 – 0 = 0.   Denominator: 0 + sin 0 = 0. Thus, we have 0/0, and we can apply L’Hôpital’s Rule. Step 2. Differentiate the numerator and the denominator with respect to x.   Derivative of numerator: d/dx (4x – tan x) = 4 – sec²x.   Derivative of denominator: d/dx (x + sin 2x) = 1 + 2cos 2x. Step 3. Evaluate the derivatives at x = 0.   sec²0 = 1/(cos²0) = 1/(1) = 1.   cos 2×0 = cos 0 = 1. So the numerator becomes 4 – 1 = 3, and the denominator becomes 1 + 2(1) = 3. Step 4. Compute the limit:   lim = 3/3 = 1. Thus, the value of the limit is 1. The correct answer is D.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

Untuk menghitung limit \( \lim_{x \to 0} \frac{4x - \tan x}{x + \sin 2x} \), kita dapat menggunakan pendekatan deret Taylor. Di sekitar \( x = 0 \), kita tahu bahwa: - \( \tan x \approx x + \frac{x^3}{3} + O(x^5) \) - \( \sin 2x \approx 2x - \frac{(2x)^3}{6} + O(x^5) = 2x - \frac{8x^3}{6} + O(x^5) = 2x - \frac{4x^3}{3} + O(x^5) \) Dengan substitusi: \[ 4x - \tan x \approx 4x - \left(x + \frac{x^3}{3}\right) = 3x - \frac{x^3}{3} \] Dan untuk penyebut: \[ x + \sin 2x \approx x + \left(2x - \frac{4x^3}{3}\right) = 3x - \frac{4x^3}{3} \] Sekarang kita substitusi kembali ke dalam limit: \[ \lim_{x \to 0} \frac{3x - \frac{x^3}{3}}{3x - \frac{4x^3}{3}} \approx \lim_{x \to 0}\frac{3x(1 - \frac{x^2}{9})}{3x(1 - \frac{4x^2}{9})} \] Menyederhanakan: \[ = \lim_{x \to 0} \frac{1 - \frac{x^2}{9}}{1 - \frac{4x^2}{9}} = \frac{1 - 0}{1 - 0} = 1 \] Jadi, nilai limit tersebut adalah \( 1 \). Jawabannya adalah D. 1.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy