Question
Prove the identity. \[ \tan \theta(\tan \theta+\cot \theta)=\sec ^{2} \theta \] To verify the identity, work each side separately until you obtain the same expression. Start with the left side. Choose the correct step and transform the expression according to the step chosen. \[ \tan \theta(\tan \theta+\cot \theta)=\square \] Distribute.
Ask by Little Chadwick. in the United States
Feb 26,2025
Upstudy AI Solution
Tutor-Verified Answer
Answer
\[
\tan \theta(\tan \theta + \cot \theta) = \sec^2 \theta
\]
Solution
Calculate or simplify the expression \( \tan(\theta) \cdot (\tan(\theta) + \cot(\theta)) \).
Simplify the expression by following steps:
- step0: Solution:
\(\tan\left(\theta \right)\left(\tan\left(\theta \right)+\cot\left(\theta \right)\right)\)
- step1: Transform the expression:
\(\frac{\sin\left(\theta \right)}{\cos\left(\theta \right)}\times \left(\tan\left(\theta \right)+\cot\left(\theta \right)\right)\)
- step2: Transform the expression:
\(\frac{\sin\left(\theta \right)}{\cos\left(\theta \right)}\times \frac{\sin^{2}\left(\theta \right)+\cos^{2}\left(\theta \right)}{\cos\left(\theta \right)\sin\left(\theta \right)}\)
- step3: Reduce the fraction:
\(\frac{1}{\cos\left(\theta \right)}\times \frac{\sin^{2}\left(\theta \right)+\cos^{2}\left(\theta \right)}{\cos\left(\theta \right)}\)
- step4: Multiply the terms:
\(\frac{\sin^{2}\left(\theta \right)+\cos^{2}\left(\theta \right)}{\cos\left(\theta \right)\cos\left(\theta \right)}\)
- step5: Multiply the terms:
\(\frac{\sin^{2}\left(\theta \right)+\cos^{2}\left(\theta \right)}{\cos^{2}\left(\theta \right)}\)
- step6: Rewrite the expression:
\(\frac{1}{\cos^{2}\left(\theta \right)}\)
- step7: Transform the expression:
\(1+\tan^{2}\left(\theta \right)\)
- step8: Transform the expression:
\(1+\sec^{2}\left(\theta \right)-1\)
- step9: Remove the opposites:
\(\sec^{2}\left(\theta \right)\)
The left side of the identity is \(\tan \theta(\tan \theta+\cot \theta)=\sec ^{2} \theta\).
Now, let's work on the right side of the identity.
The right side of the identity is \(\sec ^{2} \theta\).
Therefore, the identity \(\tan \theta(\tan \theta+\cot \theta)=\sec ^{2} \theta\) is verified.
Answered by UpStudy AI and reviewed by a Professional Tutor
Like
error msg


Mind Expander
Let's start by taking the left side of the identity: \[ \tan \theta(\tan \theta+\cot \theta) \] Now we can distribute \(\tan \theta\): \[ \tan \theta \cdot \tan \theta + \tan \theta \cdot \cot \theta \] This simplifies to: \[ \tan^2 \theta + 1 \] Since we know from the Pythagorean identity that \(\sec^2 \theta = 1 + \tan^2 \theta\), we can further simplify: \[ \tan^2 \theta + 1 = \sec^2 \theta \] Thus, we have shown that: \[ \tan \theta(\tan \theta+\cot \theta) = \sec^2 \theta \] So the identity is proved to be correct!